Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
alibaba nguyễn
7 tháng 11 2019 lúc 15:50

Xét \(x,y,z\ne0\)ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}< \left(x+y+z\right)^2\)(loại)

Xét trong 3 số có 2 số khác 0. Giả sử là \(x,y\ne0\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}< \left(x+y\right)^2\)(loại)

Vậy trong 3 số x, y, z phải có ít nhất 2 số bằng 0. Thế vô ta được phương trình có vô số nghiệm nguyên.

Khách vãng lai đã xóa
alibaba nguyễn
7 tháng 11 2019 lúc 15:52

Ý làm lộn. Đừng coi cái trên nha:

Dễ thấy với 2 trong 3 số bằng 0 thì phương trình có vô số nghiệm.

Giả sử 2 số đó là; x = y = 0 thì ta có:

\(z^2=z^2\) vô số nghiệm nguyên.

Vậy bài toán được chứng minh.

Khách vãng lai đã xóa
sotome ai
21 tháng 11 2019 lúc 11:12

😂 😂 😂 😂

trần thành đạt
Xem chi tiết
s2 Lắc Lư  s2
Xem chi tiết
Phạm Thế Mạnh
25 tháng 11 2015 lúc 22:14

x2+x=y2+2y=>x2+x+1=(y+1)2
=>x2+x+1 là chính phương
Mà x2<x2+x+1<(x+1)2
=> pt vô nghiệm
Đây chỉ là mình viết vắn tắt thôi, bạn tự thêm vào cho đầy đủ nhé

Smile
25 tháng 11 2015 lúc 22:16

ọe ... cho tui xin đi .....

Hoàng Anh Tú
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
HT2k02
14 tháng 4 2023 lúc 18:01

1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.

Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn

HT2k02
14 tháng 4 2023 lúc 18:03

Câu 2:

Chọn $x=y=2k^3; z=2k^2$ với $k$ nguyên dương.

Khi này $x^2+y^2 =8k^6 = z^3$.

Tức tồn tại vô hạn $(x;y;z)=(2k^3;2k^3;2k^2) $ với $k$ nguyên dương là nghiệm phương trình.

Anh dam ngoc
16 tháng 4 2023 lúc 12:31

Câu 2:

Chọn x=y=2k3;z=2k2 với knguyên dương.

Khi này x2+y2=8k6=z3.

Tức tồn tại vô hạn (x;y;z)=(2k3;2k3;2k2) với k nguyên dương là nghiệm phương trình.

Nguyễn Thị Cẩm Ly
Xem chi tiết
Aoi Ogata
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Nguyễn Thị Cẩm Ly
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Chiyuki Fujito
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 4 2021 lúc 23:11

Cần thêm điều kiện x;y;z đôi một phân biệt và để dấu "=" xảy ra khi thì x;y;z không âm chứ không phải dương

Không mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow xy+yz+zx\ge xy\)

\(\Rightarrow\dfrac{4}{xy+yz+zx}\le\dfrac{4}{xy}\)

Đồng thời: 

\(\left(z-x\right)^2=x^2+z\left(z-2x\right)\le x^2\Rightarrow\dfrac{1}{\left(z-x\right)^2}\ge\dfrac{1}{x^2}\) 

\(\left(y-z\right)^2=y^2+z\left(z-2y\right)\le y^2\ge\dfrac{1}{\left(y-z\right)^2}\ge\dfrac{1}{y^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{xy}\ge4\)

\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{xy}\ge2\) (hiển nhiên đúng theo AM-GM)

khoa
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 21:05

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

Ngocmai
Xem chi tiết
Suzuki Aomi
17 tháng 2 2018 lúc 22:03

1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1

Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)

2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)

Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)

3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)

Tìm GTLN của      \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.

Cmr:  \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)

Phạm Thị Thùy Linh
26 tháng 2 2019 lúc 22:12

ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay