Giải phương trình
a. 1 + \(\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b. x2 + \(\sqrt{x+5}=5\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
1. giải các phương trình :
a) $\frac{\sqrt[2]{2x-3}}{ \sqrt[2]{x-1}}$ = 2
b) x-5 $\sqrt[2]{x-2}$ = -2
2. chứng minh bất đẳng thức :
a) $\frac{a^{2}+3}{ \sqrt[n]{a^{2}+2}}$>2
b) $\sqrt[2]{a}$ + $\sqrt[2]{b}$ $\leq$ $\frac{a}{\sqrt[2]{b}}$ + $\frac{b}{\sqrt[2]{a}}$
với a >0; b>0
2:
a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)
=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
A=2 thì a^2+2=1
=>a^2=-1(loại)
=>A>2 với mọi a
b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)
=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)
=>(căn a+căn b)(a-2*căn ab+b)>=0
=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)
1
ĐK: `x>1`
PT trở thành:
\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
Vậy PT vô nghiệm.
b
ĐK: \(x\ge2\)
Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))
=> \(x=t^2+2\)
PT trở thành: \(t^2+2-5t+2=0\)
\(\Leftrightarrow t^2-5t+4=0\)
nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)
\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)
giải phương trình
a) \(\sqrt{x-5}+\sqrt{3-x}=1\)
b) \(\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
a.Vo nghiem
b.\(DK:x\ge0\)
\(\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=0\)
\(\Rightarrow x-1-x+\sqrt{x}+6=0\)
\(\Leftrightarrow x=5\left(n\right)\)
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
Giải phương trình:
\(9+\sqrt{5}x^3+5x+\frac{\sqrt{5}}{x^3}=3\sqrt{5}x^2+3x+\frac{3\sqrt{5}-1}{x}+\frac{3}{x^2}\)
giải phương trình:
a)\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b)\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
Giải các bất phương trình sau:
a.(x+1)(-x2+3x-2)<0
b.\(\sqrt{x^2-5x+4}+2\sqrt{x+5}>2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
Giải Phương Trình:
a)\(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
b)\(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)
a, bình phương rồi phân tích là ra
b, nhân chéo rồi phá ngoặc
\(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-5\sqrt{x+3}=0\)
ĐK: \(x+3\ge0\Leftrightarrow x\ge-3\) và \(x-3\ge0\Leftrightarrow x\ge3\) suy ra điều kiện là X >=3
PT \(\Leftrightarrow\sqrt{\left(x+3\right)}\left(\sqrt{x+3}-5\right)=0\Leftrightarrow\sqrt{x+3}=0hoặc\left(\sqrt{x+3}-5\right)=0\)
+) \(\sqrt{x+3}=0\Leftrightarrow x=-3loai\)
+) \(\sqrt{x-3}-5=0\Leftrightarrow\sqrt{x-3}=5\Leftrightarrow x-3=25\Leftrightarrow x=28\)
Vậy x = 28
\(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)Điều kiện x>=0
\(\Leftrightarrow x+\sqrt{x}-6=x-1\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)
Vậy x = 25
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
Giải các phương trình:
a) \(\sqrt{x}+\sqrt{x+1}-\sqrt{x^2+x}=1\)
b) \(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
c) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
d) \(\sqrt[3]{x^2-1}+\sqrt{x-3}+\sqrt{x+1}+x=\frac{x+3}{x^2-6}+5\)