Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Anh
Xem chi tiết
Trí Tiên亗
2 tháng 9 2020 lúc 9:53

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

Khách vãng lai đã xóa
lê văn gia phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 14:49

2:

a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)

=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

A=2 thì a^2+2=1

=>a^2=-1(loại)

=>A>2 với mọi a

b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)

=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)

=>(căn a+căn b)(a-2*căn ab+b)>=0

=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)

 

Gia Huy
31 tháng 7 2023 lúc 15:14

1

ĐK: `x>1`

PT trở thành:

\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)

Vậy PT vô nghiệm.

b

ĐK: \(x\ge2\)

Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))

=> \(x=t^2+2\)

PT trở thành: \(t^2+2-5t+2=0\)

\(\Leftrightarrow t^2-5t+4=0\)

nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)

\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)

Mây
Xem chi tiết
Con Chim 7 Màu
17 tháng 8 2019 lúc 14:22

a.Vo nghiem

b.\(DK:x\ge0\)

\(\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=0\)

\(\Rightarrow x-1-x+\sqrt{x}+6=0\)

\(\Leftrightarrow x=5\left(n\right)\)

Nguyễn Mai Quỳnh Anh
Xem chi tiết
Tran Dung
Xem chi tiết
Đoàn Thanh Bảo An
Xem chi tiết
Lê Thúy Kiều
Xem chi tiết
Lạnh giá
Xem chi tiết
Hoàng Anh Tú
13 tháng 10 2015 lúc 21:51

a, bình phương rồi phân tích là ra

b, nhân chéo rồi phá ngoặc

Ngô Văn Tuyên
13 tháng 10 2015 lúc 22:08

\(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-5\sqrt{x+3}=0\)

ĐK: \(x+3\ge0\Leftrightarrow x\ge-3\) và  \(x-3\ge0\Leftrightarrow x\ge3\) suy ra điều kiện là X >=3

PT \(\Leftrightarrow\sqrt{\left(x+3\right)}\left(\sqrt{x+3}-5\right)=0\Leftrightarrow\sqrt{x+3}=0hoặc\left(\sqrt{x+3}-5\right)=0\)

+) \(\sqrt{x+3}=0\Leftrightarrow x=-3loai\)

+) \(\sqrt{x-3}-5=0\Leftrightarrow\sqrt{x-3}=5\Leftrightarrow x-3=25\Leftrightarrow x=28\)

Vậy x = 28

\(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)Điều kiện x>=0

\(\Leftrightarrow x+\sqrt{x}-6=x-1\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)

Vậy x = 25

Hoàng Thị Mai Trang
Xem chi tiết
Nguyễn Ngọc Lộc
7 tháng 2 2021 lúc 10:50

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

Thanh Hoàng Thanh
7 tháng 2 2021 lúc 11:02

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

Trương Trọng Tiến
Xem chi tiết