Tìm số tự nhiên n sao cho (n+14) là bội của (n+2)
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
tìm số tự nhiên n sao cho n+7 là bội của n+2
Ta có: n+7 là bội của n+2
=> n + 7 chia hết n + 2
=> n + 2 + 5 chia hết n + 2
=> 5 chia hết n + 2
=> n + 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {-3;-1;-7;3}
Tìm số tự nhiên n sao cho 3n + 13 là bội của n-2
tìm số tự nhiên n để 3n + 14 là bội của 3n - 2.
3n+14 là bội của 3n-2
=>\(3n+14⋮3n-2\)
=>\(3n-2+16⋮3n-2\)
=>\(16⋮3n-2\)
mà 3n-2>=-2 với mọi số tự nhiên n
nên \(3n-2\in\left\{-2;-1;1;2;4;8;16\right\}\)
=>\(3n\in\left\{0;1;3;4;6;10;18\right\}\)
=>\(n\in\left\{0;\dfrac{1}{3};1;\dfrac{4}{3};2;\dfrac{10}{3};6\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1;2;6\right\}\)
1) Tìm số tự nhiên x để 14 chia hết cho (2*x+3)
câu 2: có bao nhiêu bội của 4 từ 1 đến 200
câu 3: Tìm các số tự nhiện sao cho:
a)n+1 là ước của 15
b)n+5 là ước của 12
Tìm số tự nhiên n, sao cho:
a) 2n+3 là bội của n-2
b)2n+29 là bội của 2n+1
2n + 3 là bội của n - 2
2n +3 chia hết cho n-2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư(7)
=> n = 3;1; - 5 ; 9
mà n là số tự nhiên => n = 1;3;9
bạn Nguyễn Thị Bích Phương làm đúng đó
2n+3 là bội của n-2
2n+3 chia hết cho n-2
2n-4+7 chia hết cho n-2
n-2 thuộc Ư(7)
n-2 = 1,7
n = 2,8
tìm số tự nhiên n sao cho n+15 là bội của n+3
Tìm các số tự nhiên n sao cho:
a)8 \(⋮\) (n+1)
b)14\(⋮\) (2n+3)
c)(n-2) là ước của 15
d)n+3 là bội của n-1
8chia hết (n+1)
\(\Leftrightarrow\)n+1 \(\in\)Ư(8)
Ư(8)=\(\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
TH1 :n+1=1 \(\Leftrightarrow\)n=0
TH2:n+1=2 \(\Leftrightarrow\) n=1
TH3:n+1=4 \(\Leftrightarrow\)n=3
TH4:n+1=8 \(\Leftrightarrow\)n=7
TH5:n+1=-1 \(\Leftrightarrow\)n=-2
TH6:n+1=-2 \(\Leftrightarrow\)n=-3
TH7:n+1=-4 \(\Leftrightarrow\)n=-5
TH8:n+1=-8 \(\Leftrightarrow\)n=-9
Vậy n=\(\left\{0;1;3;7;-2;-3;-5;-9\right\}\)
các câu sau tương tự như câu a . Bạn cứ thế mà làm
Tìm các số tự nhiên n sao cho:
a)8 \(⋮\) (n+1)
b)14\(⋮\) (2n+3)
c)(n-2) là ước của 15
d)n+3 là bội của n-1
a)8 chia hết n+1
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{1;2;4;8\right\}\left(n\in N\right)\)
\(\Rightarrow n\in\left\{0;1;3;7\right\}\)
b)tương tự
c)n-2 là ước 15
=>15 chia hết n-2
=>n-2 thuộc Ư(15)={±1;±3;±5;±15}
=>n thuộc...
d)n+3 là bội của n-1
=>n+3 chia hết n-1
=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1 thuộc Ư(4)={...}
=>n thuộc ...