Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Lê Bảo Ngọc
Xem chi tiết
alibaba nguyễn
16 tháng 8 2016 lúc 19:30

Theo bất đẳng thức Cô-si ta có 
a^5 + a >= 2√(a^5.a); 
hay a^5 >= 2a^3 - a. 
Chứng minh tương tự, ta cũng có 
b^5 >= 2b^3 - b. 
Cộng hai bất đẳng thức theo vế ta được 
a^5 + b^5 >= 2a^3 + 2b^3 - a - b, 
hay a^3 + b^3 >= 2a^3 + 2b^3 - a - b, 
hay a^3 + b^3 <= a + b (*). 
Vì a^3 + b^3 = (a + b)(a^2 - ab + b^2) nên bất đẳng thức (*) tương đương với 
(a + b)(a^2 - ab + b^2) <= a + b, 
hay a^2 - ab + b^2 <= 1, 
hay a^2 + b^2 <= ab + 1. 
Dấu bằng xảy ra khi a = b = 1

Hoàng Bảo Trân
Xem chi tiết
Thanh Tâm
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Hà Lê
Xem chi tiết
Rau
8 tháng 7 2017 lúc 13:10

\(< =>\left(a^2+b^2+ab\right)\le1< =>\left(a^2+b^2+ab\right)\left(a-b\right)\le a^3+b^3< =>a^3-b^3\le a^3+b^3< =>0\le b^3\)\(0\le b^2.b\)
Luôn đúng.

꧁WღX༺
Xem chi tiết
zZz Cool Kid_new zZz
24 tháng 3 2020 lúc 18:19

\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)

\(\Rightarrow a+b^2+c^3\le a+b+c\)

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)

=> đpcm

Khách vãng lai đã xóa
Thành Công
Xem chi tiết
Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 16:52

a.

Bình phương 2 vế, BĐT cần chứng minh trở thành:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)

Ta có:

\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cộng lại:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

b.

\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)

Nên ta chỉ cần chứng minh:

\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)

\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)

Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)