\(27\sqrt{5+2x}+27\sqrt{4-2x}\ge\left(4x+1\right)^2\)
\(\dfrac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\dfrac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)
1)\(\begin{cases}\sqrt{4x^2+\left(4x-9\right)\left(x-3y\right)}+\sqrt{3xy}=9y\\4\sqrt{\left(x+2\right)\left(3y+2x\right)}=3x+9\end{cases}\) 4)\(\begin{cases}\left(x^2+y\right)\sqrt{x-y+6}=2x^2-x+3y-2\\\sqrt{10x-xy-12}+1=\frac{y-x}{\sqrt{y-4}+\sqrt{6-x}}\end{cases}\)
2)\(\begin{cases}x^2+\left(y-6\right)^2=y+13x+27\\\sqrt{9x^2+\left(2x-3\right)\left(x-y\right)}+4\sqrt{xy}=7y\end{cases}\) 5)\(\begin{cases}\sqrt{4xy+\left(3\sqrt{xy}-7\right)\left(x-y\right)}+2\sqrt{xy}=4y\\\left(2x+1\right)\left[12y-1+9\sqrt{xy}-x^2-x\right]=27\left(x+1\right)\end{cases}\)
3)\(\begin{cases}\sqrt{\left(x+2\right)\left(y+1\right)+\left(x-y+1\right)\sqrt{y^2+1}}+\sqrt{x+2}=y+\sqrt{y+1}+1\\\sqrt{3x+1}-\sqrt{y+1}=2x^2+4x-y-1\end{cases}\)
Giải PT:
\(\dfrac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\dfrac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)
2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)
3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)
5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)
6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)
7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)
8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
9. \(x^2+6x+8=3\sqrt{x+2}\)
10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)
11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)
12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)
13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)
15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)
16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)
17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)
18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)
19. \(x^4+x^2-20=0\)
20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)
21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)
22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)
23. \(x^2+6x+5=\sqrt{x+7}\)
24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)
25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)
26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)
29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)
PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)
Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)
giai tiep
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)
Bạn ơi lần sau bạn đăng bài thì cố gắng đăng giãn giãn bớt bớt/ chia nhỏ bài ra chứ một cục bài như thế này nhìn rất đáng sợ và gây tâm lý ngại đọc nhé.
1. ĐKXĐ: $x\geq 1$
Đặt $x\sqrt{x-1}=a\Rightarrow x^3-x^2=x^2(x-1)=a^2$. PT đã cho trở thành:
$a^2+12a+20=0(*)$
Lại thấy rằng vì $x\geq 1$ nên $a\geq 0$
$\Rightarrow a^2+12a+20\geq 20>0$. Do đó $(*)$ vô nghiệm. Kéo theo PT ban đầu vô nghiệm.
2. ĐK: $x\geq -1$
$x^3+\sqrt{(x+1)^3}=9x+8$
$\Leftrightarrow x^3-9x-8+\sqrt{(x+1)^3}=0$
$\Leftrightarrow (x^2-x-8)(x+1)+(x+1)\sqrt{x+1}=0$
$\Leftrightarrow (x+1)(x^2-x-8+\sqrt{x+1})=0$
Nếu $x+1=0\Rightarrow x=-1$ (thỏa mãn)
Nếu $x^2-x-8+\sqrt{x+1}=0$
$\Leftrightarrow (x^2-9)-(x-3)+(\sqrt{x+1}-2)=0$
$\Leftrightarrow (x-3)\left(x+3+\frac{1}{\sqrt{x+1}+2}}-1\right)=0$
Dễ thấy với $x\geq -1$ thì biểu thức trong ngoặc lớn luôn lớn hơn $0$
Do đó $x-3=0\Rightarrow x=3$
Vậy $x=-1$ hoặc $x=3$
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)