Cho đồng thời 3 điều kiện
a + b + c = 1
a2 + b2 + c2 = 1
x/a=y/b=z/c
Cm xy + yz + xz = 0
Cho đồng thời 3 điều kiện
a + b + c = 1
a^2 + b^2 + c^2 = 1
x/a=y/b=z/c
Cm xy + yz + xz = 0
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{\Rightarrow a}{x}=\frac{b}{y}=\frac{c}{z};a+b+c=1\)
ADTC dãy tỉ số bằng nhau ta có:
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow a^2}{x^2}=\frac{b^2}{y^2}=\frac{c^2}{z^2}=\frac{1}{\left(x+y+z\right)^2}\left(1\right)\)
Áp dụng tiếp tính chất dãy tỉ số bằng nhau ta đc:
\(\frac{a^2}{x^2}=\frac{b^2}{y^2}=\frac{c^2}{z^2}=\frac{a^2+b^2+c^2}{x^2+y^2+z^2}=\frac{1}{x^2+y^2+z^2}\left(2\right)\)
Từ (1) và (2) => (x+y+z)2 = x2 + y2 + z2
=> (x+y+z)2 - x2 - y2 - z2 =0
=> 2.(xy+yz+xz) = 0
=> xy + yz + xz =0
Vậy.......
đpcm.
Cho a, b, c là các số ≠ 0
a+b+c=1 ; a2+b2+c2=1 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Tính xy +yz + zx
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)
Từ (1) và (2)
\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx=0\)
Giúp tôi giải toán:
Cho y2 +yz+z2=a2; x2 +xz+z2=b2; x2 +xy+y2=c2 và xy+yz+zx=0
Chứng minh rằng: (a+b+c)(a+b-c)(b+c-a)(c+a-b)=0
Tôi xin chân thành cảm ơn!
tôi ms lớp 7
tick nhé mọi người
Cho ba số a,b,c thỏa mãn đồng thời 3 điều kiện: a2 + 2b + 1=0; b2 + 2c + 1=0; c2 + 2a +1 =0. Tính giá trị biểu thức: A= a2003 + b2009 + c2011.
Cho 3 số x, y, z thỏa mãn đồng thời 3 điều kiện sau
a) xy+x+y=3
b) yz+y+z=8
c) xz+z+x=15
Tính P=x+y+z
ta có: xy+x+y = 3
=> xy +x +y +1 =4
=> (x+1).(y+1) = 4 (1)
tương tự, ta có: (y+1).(z+1)= 9 (2)
(x+1).(z+1) = 16 (3)
Nhân (1);(2);(3) lại vs nhau
được: \([\left(x+1\right).\left(y+1\right).\left(z+1\right)]^2=576=24^2=\left(-24\right)^2.\)
TH1: (x+1).(y+1).(z+1) = 24
=> 4.(z+1)=24
=> z+1 = 6 => z = 5
mà yz +y +z = 8
=> 6y + 5 = 8 => y = 1/2
mà xz+z+x = 15
=> 6x + 5 = 15 => x = 5/3
=> P = 5/3 +1/2 + 5 = 43/6
TH2: (x+1).(y+1).(z+1) = -24
...
bn cũng lm tương tự như TH1 nha!
cho a+b+c =a2+b2+c2=1 và x/a=y/b=z/c (a,b,c khác 0 )
hãy cm:(x+y+y)2=x2+y2+z
Áp dụng tính chất các dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)
\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)
\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)
\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)
\(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))
bài 1: Phân tích đa thức thành nhân tử
a, (xy-1)2+ (x+y)2
b, a2+2a2+2a+1
c, (1+2a).(1-2a)-a.(a+2).(a-2)
d, a2+b2-a2b2+ab-a-b
e, xy.(x+y)-yz.(y+z)+xz(x-z)
f, xyz-(xy+yz+zx)+(x+y+z)-1
giúp em với ạ ! em đang cần gấp
\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)
\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
câu1 .a2+b2-a2b2+ab-a-b
câu 2 . xy.(x+y)-yz.(y+z)+xz(x-z)
câu3 .xyz-(x+y+yz+xz)+(x+y+2)-1
Câu 1:
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=-a^2\left(b-1\right)\left(b+1\right)+\left(b-1\right)\left(a+b\right)\)
\(=\left(b-1\right)\left(-a^2b-a^2+a+b\right)\)
\(=\left(b-1\right)\cdot\left[-b\left(a^2-1\right)-a\left(a-1\right)\right]\)
\(=\left(b-1\right)\left(a-1\right)\left[-b\left(a+1\right)-a\right]\)
cho a b c và x y z thỏa mãn a+b+c=1(1) a^2+b^2+c^2=1(2), x/a=y/b=z/c(3). Cm xy+yz+xz=0