Cho a,b,c thỏa mãn ab+bc+ac=\(\frac{9}{4}\).Tìm giá trị nhỏ nhất của \(P=a^2+14b^2+10c^2-4\sqrt{2b}\)
Cho a,b,c thỏa mãn \(ab+bc+ac=\frac{9}{4}\).Tìm giá trị nhỏ nhất của biểu thức
\(P=a^2+14b^2+10c^2-4\sqrt{2b}\)
Cho ba số dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức P= \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Cho các số thực dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=ab+bc+ac. Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{a^2}{a^2+3bc}+\frac{b^2}{b^2+3ac}+\frac{c^2}{c^2+3ab}+\sqrt{a+b+c}\)
Cho các số thực dương a,b,c thoả mãn ac + b2 = 2bc. Tìm giá trị nhỏ nhất của biểu thức
P = \(x = {2a^2 + b^2 \over \sqrt{a^2b^2- ab^3 + 4b^4}} + {2b^2 + c^2 \over \sqrt{b^2c^2- bc^3 + 4c^4}}\)
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho 3 số dương a, b, c thay đổi và thỏa mãn a+b+c=2. Tìm giá trị lớn nhất của biểu thức :
\(S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ca+2b}}\)
Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)
Tương tự ta cũng có
\(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)
Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)
Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=ab+bc+ac. Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{a^2}{a^2+3bc}+\frac{b^2}{b^2+3ac}+\frac{c^2}{c^2+3ab}+\sqrt{a+b+c}\)
Cho a,b>0 thỏa mãn \(2b-ab-4\ge0\) Tìm giá trị nhỏ nhất của \(T=\frac{a^2+2b^2}{ab}\)
Theo giả thiết, ta có: \(2b-ab-4\ge0\Rightarrow2b\ge ab+4\ge4\sqrt{ab}\)
\(\Rightarrow\frac{b}{\sqrt{ab}}\ge2\Rightarrow\frac{b}{a}\ge4\)
Xét \(\frac{1}{T}=\frac{ab}{a^2+2b^2}=\frac{1}{\frac{a}{b}+\frac{2b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{31b}{16a}}\le\frac{1}{2\sqrt{\frac{1}{16}}+\frac{31}{16}.4}=\frac{4}{33}\)
\(\Rightarrow T\ge\frac{33}{4}\)
Đẳng thức xảy ra khi a = 1; b = 4