Tìm x, y biết :
2x=3y=4z và x-y+z=35
Tìm x, y, z biết
a) 2x=3y-2x và x+y= 12
b) 7x-2y=5x-3y và 2x=3y=20
c) 2x=3y=4z-2y và x+y+z=35
d)3x=4y-2x=7z-4y và x+y-2z=10
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
TÌM X, Y BIẾT :
1) x/2=y=z/3 và 2x-3y+4z=(-24)
2) 2x=3y và x^2+y^2=52
3) 5x=2y và x^3=y^3=133
4) -2x=3y và x^2*y^3=72
5) x/5=y/-6=z/7 và y-z=35
6) x+1/3=y+2/4=z+3/5 và x+y+z=18
7) x/2=y/3, y/2=z/5 và x+y+z=50
x254n3jsm3,s3333
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
6) *2x - 3y + 4z = 48
<=> 4z -2z +4z = 48
=> ( 4-2+4)z = 48
=> z=8 => 2z= 16
* 2x -3y + 4z =48
<=> 6y - 3y +6y =48
=> (6 - 3+ 6)y = 48
=> y= \(\frac{16}{3}\) => 3y = 16
* 2x - 3y + 4z =48
<=> 2x -x + 2x = 48
=> ( 2 -1 +2)x =48
=>x= 16
Tìm x,y,z biết 2x=3y=4z và x+y+z=39
tìm x, y,z biết 2x=3y=4z và x+y+z=169
\(2x=3y=4z\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{169}{13}=13\)
\(\Rightarrow\frac{x}{6}=13\Rightarrow x=13.6=78\)
\(\Rightarrow\frac{y}{4}=13\Rightarrow y=13.4=52\)
\(\Rightarrow\frac{z}{3}=13\Rightarrow z=13.3=39\)
Vậy ...
Thánh cũng lạy con vì thánh mới lớp 6
2x = 3y = 4z và x - y + z = 35
\(2x=3y=4z\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x-y+z}{6-4+3}=\dfrac{35}{5}=7\\ \Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=21\end{matrix}\right.\)
\(2x=3y=4z\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x-y+z}{6-4+3}=\dfrac{35}{5}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.6=42\\y=7.4=28\\z=7.3=21\end{matrix}\right.\)
tìm x,y,z biết 2x=3y=4z và x+y-2z=-8
GT
\(\Leftrightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{2z}{\dfrac{1}{2}}=\dfrac{x+y-2z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{2}}=\dfrac{-8}{\dfrac{1}{3}}=-24\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-24.\dfrac{1}{2}=-12\\y=-24.\dfrac{1}{3}=-8\\z=-24.\dfrac{1}{4}=-6\end{matrix}\right.\)
tìm x,y,z biết
2x=3y=4z và x-y+z=-10