Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Bình
Xem chi tiết
HT.Phong (9A5)
27 tháng 7 2023 lúc 9:39

Ta có: \(\left\{{}\begin{matrix}AC^2=BC\cdot HC\\AB^2=BC\cdot HB\end{matrix}\right.\)

 Cộng theo vế ta có:

\(AB^2+AC^2=BC\cdot HC+BC\cdot HB\)

\(\Rightarrow AB^2+AC^2=BC\cdot\left(HC+HB\right)\)

Mà \(HC+HB=BC\) nên:

\(AB^2+AC^2=BC\cdot BC\)

\(\Rightarrow AB^2+AC^2=BC^2\)

Vậy tam giác ABC vuông tại A

Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 8:28

AC^2=BC*HC

AB^2=BC*HB

=>AC^2+AB^2=BC(HB+HC)=BC^2

=>ΔABC vuông tại A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2017 lúc 2:04

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

Nguyễn Nguyên An
Xem chi tiết
ngô thị thanh lam
31 tháng 3 2016 lúc 22:24

 Giả sử ∆ABC  có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác  => GB = BM; GC = CN  mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G =>  do đó ∆BCN = ∆CBM vì:  BC là cạnh chung CN = BM (gt)  (cmt) =>   =>  ∆ABC  cân tại A 

Devil
31 tháng 3 2016 lúc 22:31

định lí đảo mà bạn

Nguyễn Nguyên An
31 tháng 3 2016 lúc 22:32

ờ thì mik viết là định lí đảo mà

Võ Văn Phúc Đường
Xem chi tiết
Thương Văn
27 tháng 3 2016 lúc 22:24

sach toán 7 tập 2 bạn ơi

Devil
27 tháng 3 2016 lúc 22:30

định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau

giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB) 

suy ra  B=C và

AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC

xét tam giác DBC và tam giác ECB có:

EB=DC(cmt)

BC(chung)
B=C(tam giác ABC cân tại A)

suy ra tam giac sDBC=ACB(c.g.c)

suy ra EC=BD

You silly girl
27 tháng 3 2016 lúc 22:31

cho mk 1 tk di !!

Sách Giáo Khoa
Xem chi tiết
Tuyết Nhi Melody
19 tháng 4 2017 lúc 14:44

Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G

=> G là trọng tâm của tam giác

=> GB = BM; GC = CN

mà BM = CN (giả thiết) nên GB = GC

=> ∆GBC cân tại G => GCB^=GBC^

do đó ∆BCN = ∆CBM vì:

BC là cạnh chung

CN = BM (gt)

GCB^=GBC^ (cmt)

=> NBC^=MCB^ => ∆ABC cân tại A

Nguyễn Tất Đạt
Xem chi tiết
Không Tên
22 tháng 7 2018 lúc 21:25

A B C H

Cho  \(\Delta ABC\)có:  \(AB^2+AC^2=BC^2\)đường cao  \(AH\)

Chứng minh:  \(\Delta ABC\)vuông tại A  (tức Pytago đảo)

                Bài làm

Áp dụng định lý Pytago ta có:

       \(AB^2=AH^2+BH^2\)

      \(AC^2=AH^2+HC^2\)

Theo giả thiết ta có:  \(BC^2=AB^2+AC^2\)

\(\Rightarrow\)\(AH^2=BH.CH\)  \(\Rightarrow\)\(\frac{AH}{CH}=\frac{BH}{AH}\)

Xét  \(\Delta ABH\)và  \(\Delta CAH\)có:

    \(\frac{AH}{CH}=\frac{BH}{AH}\) (cmt)

   \(\widehat{AHB}=\widehat{CHA}=90^0\)

suy ra:   \(\Delta ABH~\Delta CAH\)

\(\Rightarrow\)\(\widehat{BAH}=\widehat{ACH}\)

suy ra:  \(\widehat{BAC}=90^0\)

Nguyệt
22 tháng 7 2018 lúc 21:05

Trong 1 tam giac vuong co ti le cua 3 canh 
Đầu tiên Bình phương của cạnh huyền ,bạn bình phương tỉ số đó lên (rồi đánh số 1 nhỏ) 
Sau đó Tổng bình phương 2 cạnh còn lại rồi tính ra công lại bằng số bình phương của cạnh huyền(rồi đánh số 2) 
Từ 1 và 2 suy ra:Tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông 
Vậy là bạn chứng minh bình thường rồi kết luận định lí của pitago đảo thành pitago.Vậy là xong rồi

Ngô Tuấn Huy
22 tháng 7 2018 lúc 21:09

Định lí Pytago đảo.

Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại  thì tam giác đó là tam giác vuông.

∆ABC :BC2=AB2+AC2

=> \(\widehat{BAC}\)= 902

Nguyễn Tuấn Vũ
Xem chi tiết
Nguyễn Thị Ly
Xem chi tiết
Nguen Thang Hoang
3 tháng 3 2021 lúc 20:18

vì Ià điểm chính giữa của cung AB,suy ra:\(\widehat{IA}=\widehat{IB}\)

Ta có: OA=OB=bán kính. Suy ra đường kính IK là đường trung trực của dây ABAB. Vậy HA=HB (đpcm)

b,Mệnh đề đảo: Đường kính đi qua trung điểm của một dây thì đi qua điểm chính giữa của cung căng dây đó.

Khách vãng lai đã xóa
nguyễn thị kiều oanh
Xem chi tiết