Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thu Hường
Xem chi tiết
Incursion_03
8 tháng 1 2019 lúc 21:23

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)\ge9abc\)

Áp dụng bất đẳng thức Cô-si cho 3 số được

\(\left(ab+bc+ca\right)\left(a+b+c\right)\ge3\sqrt[3]{ab.bc.ca}.3\sqrt[3]{abc}=9abc\left(Đpcm\right)\)

Dấu "=" xảy ra <=> a = b = c

tth_new
9 tháng 1 2019 lúc 8:24

Cách thông dụng nè:

Theo BĐT Cô si cho 3 số:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (1)

\(a+b+c\ge3\sqrt[3]{abc}\) (2)

Nhân theo vế (1) và (2),ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)

Chia cả hai vế của BĐT cho a + b + c,ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}^{\left(đpcm\right)}\)

Nguyễn Hữu Phước
Xem chi tiết
Lương Ngọc Anh
9 tháng 3 2016 lúc 21:20

dùng bất đẳng thức svacxơ nha bạn

Hoàng Đức Khải
Xem chi tiết
Phan Thị Xuân
Xem chi tiết
Trần Quốc Khanh
7 tháng 2 2020 lúc 9:33

\(\Rightarrow\frac{a+b+c}{abc}=\frac{1}{9}\Leftrightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=\frac{2}{9}\)

Lại có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=1\)

Vậy 1/a^2+1/b^2+1/c^2=1-2/9=7/9 ( Sê đài )

Khách vãng lai đã xóa
hanvu
Xem chi tiết
Trần Phúc Khang
31 tháng 7 2019 lúc 19:53

1. BĐT ban đầu

<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)

<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)

Áp dụng BĐT buniacoxki dang phân thức 

=> BĐT cần CM

<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> BĐT được CM

Phùng Minh Quân
31 tháng 7 2019 lúc 21:15

2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)

ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)

=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

Trần Phúc Khang
31 tháng 7 2019 lúc 21:46

Bạn @Diệu Linh@ làm nhầm dòng 5 rồi nhé

2, BĐT ban đầu 

<=> \(\left(1-\frac{1}{1+a+b}\right)+\left(1-\frac{1}{1+b+c}\right)+\left(1-\frac{1}{1+a+c}\right)\ge2\)

<=> \(\frac{\left(a+b\right)^2}{a+b+\left(a+b\right)^2}+\frac{\left(b+c\right)^2}{b+c+\left(b+c\right)^2}+\frac{\left(c+a\right)^2}{c+a+\left(c+a\right)^2}\ge2\)

Dùng BĐT buniacoxki dạng phân thức ở VT 

\(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)+\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}\)

Mà \(a+b+c\le ab+bc+ac\)

=> \(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}=\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=2\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Darth Vader
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2019 lúc 22:58

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

Trần Huỳnh Tú Trinh
Xem chi tiết
Lê Thị Thục Hiền
9 tháng 9 2019 lúc 21:54

Áp dụng bđt svac-xơ có:

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)

<=> \(A\ge\frac{9}{\left(a+b+c\right)^2}\)

Với a,b,c>0 và a+b+c \(\le1\) => 0<(a+b+c)2\(\le1\)=> \(\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

=>A\(\ge9\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

Phạm Minh Quang
23 tháng 11 2019 lúc 23:10

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

ta có A\(\ge\frac{9}{\left(a+b+c\right)^2}=9\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
nguyễn  kiều thanh
Xem chi tiết
Đức Lộc
24 tháng 8 2019 lúc 19:50

Xét \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{a+b+c}{abc}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)(đpcm)

Ngọc Hạnh Nguyễn
Xem chi tiết