Q=(y-3)(y+3)(y2+9)-(y2+2)(y2-2)vs y=2019
Cho biết x vs y là hai đại lượng tỉ lệ thuận,x1 vs x2 là hai giá trị khác nhau của x, y1 vs y2 là hai giá trị tương ứng của y.
a) Tính x1, biết : y1=-3; y2=-2;x2=5
b) Tính x2 vs y2 biết : x2 + y2 = 10, x1=2, y1=3
(y-2)3-(y-3)(y2+3y+9)+6(y+1)2=49
Tìm y
\(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)
\(\Leftrightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)
\(\Leftrightarrow24y=24\)
hay y=1
cho x,y là hai đại lượng tỉ lệ nghịch.x,y là 2 giá trị khác nhau của x; y1; y2 là 2 giá trị tương ứng của y.
a) tính y2 biết x11y1=-45; x2=9
b) tính x1=2;x2=4;y1+y2=-12. tính y1,y2
c) x2=3;x1+2y2=18; y1=12. tính x1;y2
Biết x,y là 2 đại lượng tỉ lệ thuận
x1,x2 là 2 giá trị của x
y1,y2 là 2 giá trị của y
a. Tính x1 biết x2=3, y1= -3/5, y2 = -1/9
b. Tính x2,y2 biết: y2-x2=-7, x1=5,y1=-2
a)Vì x,y là 2 đại lượng tỉ lê thuận nên:
\(\frac{x_1}{x_2}=\frac{y_1}{y_2}\Leftrightarrow\frac{x_1}{3}=\frac{-\frac{3}{5}}{-\frac{1}{9}}\)
\(\Leftrightarrow\frac{x_1}{3}=\frac{27}{3}\Leftrightarrow x_1=\frac{27\cdot3}{3}=27\)
b)Vì x,y là 2 đại lượng tỉ lệ thuận nên:
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Leftrightarrow\frac{-2}{5}=\frac{y_2}{x_2}\Leftrightarrow\frac{x_2}{5}=\frac{y_2}{-2}\)
Áp dụng tc dãy tí
\(\frac{x_2}{5}=\frac{y_2}{-2}=\frac{y_2-x_2}{-2-5}=\frac{-7}{-7}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x_2}{5}=1\Rightarrow x_2=5\\\frac{y_2}{-2}=1\Rightarrow y_2=-2\end{cases}}\)
Biết x,y là 2 đại lượng tỉ lệ thuận
x1,x2 là 2 giá trị của x
y1,y2 là 2 giá trị của y
a. Tính x1 biết x2=3, y1= -3/5, y2 = -1/9
b. Tính x2,y2 biết: y2-x2=-7, x1=5,y1=-2
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-3}{5}:\dfrac{-1}{9}=\dfrac{3}{5}\cdot9=\dfrac{27}{5}\)
hay x1=81/5
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\) nên \(\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: x2=5;y2=-2
Biết x,y là 2 ĐL TLT,x1,x2 là hai giá trị khác nhau của x và y1,y2 là hai giá trị tương ứng của y
a)Tính x1 biết :x2=3,y1=-3/5,y2 =1/9
b)Tính x2,y2 biết y2-x2=-7,x1=5,y1=-2
trả lời nhanh giúp mik với ak
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$
rút gọn biểu thức
a, x(x+4)(x-4) - (x2+1) - (x2-1)
b, ( y - 3 ) ( y + 3 ) ( y2 + 9 ) - ( y2 + 2 ) ( y2 - 2 )
c, ( a+b+c )2 + ( b+c-a )2 ( c-a-b )2 + ( a-b+c )2
d, ( a+b-c )2 + ( a-c )2 - 2ab - 2bc
giúp emmm
\(a,=x^3-16x-x^2-1-x^2+1=x^3-2x^2-16x\\ b,=y^4-81-y^4+4=-77\\ d,=a^2+b^2+c^2+2ab-2bc-2ac+a^2-2ac+c^2-2ab-2ac\\ =2a^2+b^2+2c^2-2bc-6ac\)
Rút gọn:
a) x2 . (x + 4) - (x2 + 1) . (x2 - 1)
b) (y - 3) . (y + 3) . (y2 + 9) - (y2 + 2) . (y2 - 2)
c) (2 + 2y)2 + (x - 2y)2 - 2. (x + 2). (x - 2)
d) (a + b - c)2 - (a - c)2 - 2ab + 2bc
Bài 4 : Tìm y , biết :
a) y ( 2y - 7 ) - 4y + 14 = 0
b) ( y + 3 )( y2 - 3y + 9 ) - y( y2 - 3 ) = 18
Giúp mình hai câu này nha. Câu 1:Giá trị của biểu thức x3+3x2+3x+1 tại x=19 là: A. 8000. B. 6000. C. 80. D. 60 Câu 2:Phân tích đa thức y3+27 ta được kết quả là: A.(y-3)(y2-3y+3) B.(y+3)(y2-3y+9) C.(y+3)3. D.(y+3)(y2-3y+3)