Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 22:57

a) Để hàm số \(y = (1 - 3m){x^2} + 3\) là hàm số bậc hai thì: \(1 - 3m \ne 0\) tức là \(m \ne \frac{1}{3}\)

Vậy \(m \ne \frac{1}{3}\) thì hàm số đã cho là hàm số bậc hai.

b) Để hàm số \(y = (4m - 1){(x - 7)^2}\) là hàm số bậc hai thì: \(4m - 1 \ne 0\) tức là \(m \ne \frac{1}{4}\)

Vậy \(m \ne \frac{1}{4}\) thì hàm số đã cho là hàm số bậc hai.

c) Để hàm số \(y = 2({x^2} + 1) + 11 - m\) là hàm số bậc hai thì: \(2 \ne 0\) và \(m \in \mathbb R\)

Vậy \(m \in \mathbb R\) thì hàm số đã cho là hàm số bậc hai.

Xem chi tiết

\(Ta.có:y=ax+b\)

HSĐB khi a>0 ; HSNB khi a<0

Từ đây em giải các a ra thôi nè!

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:41

a: Để hàm số đồng biến thì 2m-10>0

=>2m>10

=>m>5

b: Để hàm số đồng biến thì 2-5m>0

=>5m<2

=>m<2/5

c: Để hàm số nghịch biến thì 3-7m<0

=>7m>3

=>m>3/7

d:

\(y=m\left(3-2x\right)+x-2\)

\(=3m-2mx+x-2\)

\(=x\left(-2m+1\right)+3m-2\)

Để hàm số nghịch biến thì -2m+1<0

=>-2m<-1

=>m>1/2

e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)

f: Để đây là hàm số bậc nhất thì

\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)

g: Để hàm số đồng biến thì \(m^2+6m+9>0\)

=>\(\left(m+3\right)^2>0\)

=>m+3<>0

=>m<>-3

h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)

=>\(m\notin\left\{1;4\right\}\)

le khanh huy
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 20:45

a: y=m^2x-4mx+8m+4x+3

=x(m^2-4m+4)+8m+3

Để đây là hàm số bậc nhất thì m^2-4m+4<>0

=>(m-2)^2<>0

=>m-2<>0

=>m<>2

b: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}2018-2m>=0\\\sqrt{2018-2m}< >0\end{matrix}\right.\Leftrightarrow2018-2m>0\)

=>2m<2018

=>m<1009

kudo shinichi
Xem chi tiết
Trần Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 13:05

a: Đây là hàm số bậc nhất

a=2; b=1

Huyền Nguyễn Thị Minh
Xem chi tiết
Akai Haruma
26 tháng 8 2021 lúc 12:52

Bài 1:

a. $y=(m-2m+3m-2m+3)x-2=3x-2$

Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$

b. Vì  $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$

Akai Haruma
26 tháng 8 2021 lúc 12:53

Bài 2:

Đồ thị xanh lá cây: $y=-x+3$

Đồ thị xanh nước biển: $y=2x+1$

 

Linh Ngoc Nguyen
Xem chi tiết
tth_new
10 tháng 12 2020 lúc 13:33

1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì

\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)

Hệ phương trình tương đương với:

\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)

Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.

2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.

\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)

\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)

và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)

Từ (1) và (2) và (3) ta tìm được m = 1.

tamanh nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 22:39

2: Hai đường thẳng này song song