Tìm m để hàm số y= căn bậc hai của -2x+3m +2 + x+1/2x+4m-8
Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:
a) \(y = (1 - 3m){x^2} + 3\)
b) \(y = (4m - 1){(x - 7)^2}\)
c) \(y = 2({x^2} + 1) + 11 - m\)
a) Để hàm số \(y = (1 - 3m){x^2} + 3\) là hàm số bậc hai thì: \(1 - 3m \ne 0\) tức là \(m \ne \frac{1}{3}\)
Vậy \(m \ne \frac{1}{3}\) thì hàm số đã cho là hàm số bậc hai.
b) Để hàm số \(y = (4m - 1){(x - 7)^2}\) là hàm số bậc hai thì: \(4m - 1 \ne 0\) tức là \(m \ne \frac{1}{4}\)
Vậy \(m \ne \frac{1}{4}\) thì hàm số đã cho là hàm số bậc hai.
c) Để hàm số \(y = 2({x^2} + 1) + 11 - m\) là hàm số bậc hai thì: \(2 \ne 0\) và \(m \in \mathbb R\)
Vậy \(m \in \mathbb R\) thì hàm số đã cho là hàm số bậc hai.
Tìm m để hàm số
a) y = (2m - 10)x + 2 đồng biến
b) y = (2 - 5m)x + 4m - 3 đồng biến
c) y = (3 - 7m)x - 2 + 4m nghịch biến
d) y = m(3 - 2x) + x - 2 nghịch biến
e) y = (3 - √m)x - 2 là hàm số bậc nhất
f) y = \(\left(\sqrt{m-2}-1\right)x+15\) là hàm số bậc nhất
g) y = (m² + 6m + 9)x + 2 đồng biến
h) y = \(\dfrac{m-1}{m-4}x+2\) là hàm số bậc nhất
\(Ta.có:y=ax+b\)
HSĐB khi a>0 ; HSNB khi a<0
Từ đây em giải các a ra thôi nè!
a: Để hàm số đồng biến thì 2m-10>0
=>2m>10
=>m>5
b: Để hàm số đồng biến thì 2-5m>0
=>5m<2
=>m<2/5
c: Để hàm số nghịch biến thì 3-7m<0
=>7m>3
=>m>3/7
d:
\(y=m\left(3-2x\right)+x-2\)
\(=3m-2mx+x-2\)
\(=x\left(-2m+1\right)+3m-2\)
Để hàm số nghịch biến thì -2m+1<0
=>-2m<-1
=>m>1/2
e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)
f: Để đây là hàm số bậc nhất thì
\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)
g: Để hàm số đồng biến thì \(m^2+6m+9>0\)
=>\(\left(m+3\right)^2>0\)
=>m+3<>0
=>m<>-3
h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)
=>\(m\notin\left\{1;4\right\}\)
giải hộ :
1. cho hàm số Y = (27m + 15 / 32m -19 ) +2019
a, tìm điều kiện để hàm số trên là hàm số bậc nhất
b, tìm m để hàm số đồng biến ,ngịch biến chú thích: dấu / là dấu chia trong phân số
2.tìm điều kiện để các hàm số sau là hàm số bậc nhất
a, Y=(m+2 / m-3)*x+ 2
b,Y=(2/4x-4)*x-1
c,Y=căn(2x+4)-2017
d, Y=căn[(7x-2)/3m+5]*x-2015 chú thích :*2* là bình phương(vd;x bình phương)
e,Y=(m*2* -2m-1)*x*2*
f, Y=( -4m*2* -15x +19)x*2* -(2m+5)x-2017
Tìm m để mỗi hàm số sau là hàm số bậc nhất:
a) \(y=\)\(m^2x-4m\left(x-2\right)+4x+3\)
b) \(y=\sqrt{2018-2m}\left(x-1\right)\)
a: y=m^2x-4mx+8m+4x+3
=x(m^2-4m+4)+8m+3
Để đây là hàm số bậc nhất thì m^2-4m+4<>0
=>(m-2)^2<>0
=>m-2<>0
=>m<>2
b: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}2018-2m>=0\\\sqrt{2018-2m}< >0\end{matrix}\right.\Leftrightarrow2018-2m>0\)
=>2m<2018
=>m<1009
cho 2 hàm số bậc nhất y=(10m^2+4m+5)x-m-5 và y=(m+9)x-3m-1.Tìm m để đồ thị của 2 hàm số lafhai đường thẳng song song với nhau
Trong các hám số sau đây, hàm số nào là hàm số bậc nhất? Xác định các hệ số a,b của các hàm số đã cho a)y =2x +1 b) y =-2x c) y=x² +1 d) y= căn bậc hai của 2 (x-1)
a: Đây là hàm số bậc nhất
a=2; b=1
1.Cho hàm số y=(m−2m+3m−2m+3)x-2
a.Tìm m để hàm số trên là hàm sô bậc nhất.
b.Tìm m để hàm số trên là đồng biến.
2.Vẽ đô thị hàm số y=-x +3 và y=2x+1 trên cùng 1 hệ trục tọa độ.
Trả lời giúp mình với ạ!Mình cảm ơn!
Bài 1:
a. $y=(m-2m+3m-2m+3)x-2=3x-2$
Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$
b. Vì $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$
Bài 2:
Đồ thị xanh lá cây: $y=-x+3$
Đồ thị xanh nước biển: $y=2x+1$
Cho hai hàm số bậc nhất y = (m + 1)x + 2m và y = (2m + 1)x + 3m. 1) Tìm giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song. 2) Tìm giá trị của m để giao điểm của hai đồ thị đã cho nằm trên trục hoành.
1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)
Hệ phương trình tương đương với:
\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)
Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.
2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.
\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)
\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)
và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)
Từ (1) và (2) và (3) ta tìm được m = 1.
1. Cho hai hàm số bậc nhất y=3x−k+1 và y=mx+k. Tìm điều kiện đối với m và k để đồ thị của hai hàm số là hai đường thẳng trùng nhau.
2. Hai đường thẳng y = 2x và y = 2x+1 có vị trí :
3. Hai đường thẳng y = x+2 và y = 0,5x – 1 có vị trí :
4. Hai đường thẳng y = 1 – 5x và y – 1= – 5x có vị trí :
5. Cho hàm số y=ax+5. Để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là √5 thì hệ số a bằng :
2: Hai đường thẳng này song song