PTĐTTNT
(x+1)(x+2)(x+3)(x+4) - 24
PTĐTTNT
(x+2)(x+3)(x+4)(x+5)-24
(x+2)(x+3)(x+4)(x+5)-24
= [(x+2)(x+5)][(x+3)(x+4)] -24
=(x^2+7x+10)(x^2+7x+12)-24
thay x^2+7x+11=y
=> (y-1)(y+1)-24=y^2-1^2-24=y^2-25=(y-5)(y+5)
= (x^2+7x+11-5)(x^2+7x+11+5)=(x^2+7x+6)(x^2+7x+16)=(x^2+x+6x+6)(x^2+7x+16)=[x(x+1)+6(x+1)]((x^2+7x+16)=(x+1)(x+6)(x^2+7x+16)
(x + 2)(x + 3)(x + 5)(x + 7) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
=(x2 + 7x + 10)(x2 + 7x +12) - 24
Đặt x2 + 7x + 11 = t ; ta có:
(t - 1)(t + 1) - 24
= t2 - 12 - 24
= t2 - 25
= (t - 5)(t + 5)
Thay t = x2 + 7x + 11 ta được:
(x2 + 7x + 11 - 5)(x2 + 7x +11 + 5)
= (x2 + 7x + 6)(x2 + 7x + 16)
= (x + 1)(x + 6)(x2 + 7x + 16)
Chúc bn học tốt
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)( * )
Đặt \(t=x^2+7x+10\), khi đó (*) trở thành:
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)\)
Thay \(t=x^2+7x+10\) vào, ta được:
\(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
Vậy ...
PTĐTTNT:
a) x^3+4x^2-29x+24
b) x^6+3x^5+4x^4+4x^3+4x^2+3x+1
c)x^12+1
a) x3 + 4x2 - 29x + 24
= x3 - 3x2 + 7x2 - 21x - 8x + 24
= x2(x-3) + 7x(x-3) - 8(x-3)
= (x-3)(x2+7x-8)
=(x-3)(x2+8x-x-8)
= (x-3)[(x2+8x)-(x+8)]
= (x-3)[x(x+8)-(x+8)]
= (x-3)(x+8)(x-1)
PTĐTTNT
a, x3+4x2-24x+24
b,x8+x4+1
a) =x3-2x2+6x2-12x -12x +24
= x2(x-2)+6x(x-2)-12(x-2)
= (x-2)(x2+6x-12)
mk giải đc câu a thôi, bn zô jup mk lại vs
\(a,x^3+4x^2-24x+24\)
\(=x^3+6x^2-12x-2x^2-12x+24\)
\(=\left(x^3-2x^2\right)+\left(6x^2-12x\right)-\left(12x-24\right)\)
\(=x^2\left(x-2\right)+6x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+6x-12\right)\)
b)
x8+x4+1
= x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1
= x6(x2+x+1)-x5(x2+x+1) +x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x6-x5+x3-x+1)
= (x2+x+1)(x6-x5+x4-x4+x3-x2+x2-x+1)
= (x2+x+1)[x4(x2-x+1) - x2(x2-x+1) + (x2-x+1)]
= (x2+x+1)(x2-x+1)(x4-x2+1)
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) + 1
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
PTĐTTNT
\(\left(x^2+3x-4\right)\left(x^2+x-6\right)-24\)
Giải giùm em \(\left(x^2+4x+8\right)^2+3x^3+14x^2+24x\) nha
\(=\left(a-1\right)\left(a+4\right)\left(a+3\right)\left(a-2\right)-24=\left(a-2\right)\left(a+4\right)\left(a-1\right)\left(a+3\right)-24\)\(=\left(a^2+2a-8\right)\left(a^2+2a-3\right)-24.dat:a^2+2a-8=h\)\(\Rightarrow\left(a^2+2a-8\right)\left(a^2+2a-3\right)-24=h\left(h+5\right)-24=h^2+5h-24=\left(h-3\right)\left(h+8\right)\)\(=\left(a^2+2a-11\right)a\left(a+2\right)\)
PTĐTTNT :
`-(x+2)+3(x^2-4)`
\(-\left(x+2\right)+3\left(x^2-4\right)\)
\(=3\left(x-2\right)\left(x+2\right)-\left(x+2\right)\)
\(=\left(x+2\right)\left[3\left(x-2\right)-1\right]=\left(x+2\right)\left(3x-7\right)\)
PTĐTTNT (x + 2)(x+3)(x+4)(x+5) – 8
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)\(=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-8\)
\(=\left(x^2+7x+11\right)^2-9\)
\(=\left(x^2+7x+11-3\right)\left(x^2+7x+11+3\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
1) 2x2+8x+7
2)2x2-5x-12
3)4x3-2x-4
4)x4+x+1
5)x7+x+1
m.n giúp mjk vs ạ, thanks( PTĐTTNT)
1.PTĐTTNT
a, x^2-2xy-25-y^2
b, x( x-1)+y (1-x)
c, 7x+7y-(x-y)
d, x^4+y^4
2, Chứng minh rằng:
a, x^2-5x+3≥0
b, -x^2+3x-4<0 với mọi x
Bài 1:
a) \(x^2-2xy-25+y^2\) (Sửa đề)
\(=x^2-2xy+y^2-25\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Vậy ...
b) \(x\left(x-1\right)+y\left(1-x\right)\)
\(=x\left(x-1\right)-y\left(x-1\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
Vậy ...
c) \(7x+7y-\left(x+y\right)\) (Sửa đề)
\(=7\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(7-1\right)\)
\(=6\left(x+y\right)\)
Vậy ...
d) \(x^4+y^4\)
\(=\left(x^2\right)^2+\left(y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Vậy ...
Bạn xem lại 1 sô câu sai và bài 2 hộ mk