Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thanh Thảo
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 19:35

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

Thái Ngô Hoàng
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 10:42

Các số hạng trong dãy này có dạng là \(\dfrac{n\left(n+1\right)}{2}\)

Tổng của hai số hạng liên tiếp trong dãy là:

\(\dfrac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\dfrac{n^2+n+n^2+3n+2}{2}=\dfrac{2n^2+4n+2}{2}\)

\(=n^2+2n+1\)

\(=\left(n+1\right)^2\) là số một số chính phương(đpcm)

Nguyễn Đình Lân
Xem chi tiết
Ngô Nhật Minh
26 tháng 12 2022 lúc 14:04

a) A=3+32+33+34+35+36+....+328+329+330

⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔A=3.13+34.13+....+328.13

⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔A=3.364+....+325.364

⇔A=364(3+35+310+....+325)

 

 

Nguyễn Hà Băng Thanh
Xem chi tiết
Newgate Edward (Bố Già)
11 tháng 10 2016 lúc 23:05

A=1+3+32+33+...+32015
=> 3A=3+32+33+...+32016
=> 3A-A=2A=(3+32+33+...+32016)-(1+3+32+33+...+32015)
                   =32016-1
=>2A+1=32016=(31013)2 là số chính phương.

Nguyễn Hà Băng Thanh
13 tháng 10 2016 lúc 21:58

cảm ơn bạn nhiều

Đỗ Việt Long An
Xem chi tiết
Ngọc Diệp Nguyễn
25 tháng 11 2021 lúc 15:43

là có nha 

HT

Khách vãng lai đã xóa
Đỗ Việt Long An
Xem chi tiết
Phongg
Xem chi tiết
Akai Haruma
9 tháng 11 2023 lúc 11:24

Lời giải:

$A=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+...+(3^{87}+3^{88}+3^{89}+3^{90})$

$=13+3^3(1+3+3^2+3^3)+3^7(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$

$=13+(1+3+3^2+3^3)(3^3+3^7+...+3^{87})$

$=13+40(3^3+3^7+...+3^{87})$

$\Rightarrow A$ chia 5 dư 3

Do đó A không là scp.

HT.Phong (9A5)
9 tháng 11 2023 lúc 11:19

Ta có: 

\(A=1+3+3^2+3^3+...+3^{90}\)

\(3A=3\cdot\left(1+3+3^2+...+3^{90}\right)\)

\(3A=3+3^2+3^3+...+3^{91}\)

\(3A-A=3+3^2+3^3+...+3^{91}-1-3-3^2-...-3^{90}\)

\(2A=3^{91}-1\)

\(A=\dfrac{3^{91}-1}{2}\)

Mà: \(3^{91}-1\) không phải là số chính phương nên \(A=\dfrac{3^{91}-1}{2}\) không phải là số chính phương 

Xem chi tiết

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

nguyentranvietanh
13 tháng 6 2019 lúc 15:34

em den lam