Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Khánh Ngân
Xem chi tiết
Đinh văn Thương
Xem chi tiết
Nguyễn Phạm Thanh Ngân
Xem chi tiết
Nguyen Thao
Xem chi tiết
Nguyễn Nam
4 tháng 12 2017 lúc 21:35

a) \(x^2-x+1\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

b) \(x^2+2x+2\)

\(=\left(x^2+2x+1\right)+1\)

\(=\left(x+1\right)^2+1>0\forall x\)

c) \(-x^2+4x-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Nam
4 tháng 12 2017 lúc 21:43

1)

a) \(3x^3y^2-6x^2y^3+9x^2y^2\)

\(=3x^2y^2\left(x-2y+3\right)\)

b) \(5x^2y^3-25x^3y^4+10x^3y^3\)

\(=5x^2y^3\left(1-5xy+2x\right)\)

Nguyễn Đức Tố Trân
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Ngoc Anhh
6 tháng 10 2018 lúc 19:27

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

Phùng Minh Quân
6 tháng 10 2018 lúc 19:28

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

Ngoc Anhh
6 tháng 10 2018 lúc 19:29

\(-2+2x-x^2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\)

Do \(-\left(x-1\right)^2\le0\)

\(\Rightarrow-\left(x-1\right)^2-1\le0-1< 0\left(dpcm\right)\)

Pew đẹp zai
Xem chi tiết
Trần Tiến Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 20:40

\(P\left(x\right)=\dfrac{1}{2}x^3-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2+\dfrac{1}{2}x^4-x^2=-\dfrac{1}{2}x^3+\dfrac{1}{2}x^2=-\dfrac{1}{2}x^2\left(x-1\right)\)

Vì x(x-1) chia hết cho 2 với mọi số nguyên x 

nên P(x) luôn là số nguyên nếu x nguyên

Khánh Linh
Xem chi tiết
hattori heiji
18 tháng 12 2017 lúc 22:18

a) A=x4 +3x2+3

A=(x2)2+2.\(\dfrac{3}{2}\) x2+\(\left(\dfrac{3}{2}\right)^2\) +\(\dfrac{3}{4}\)

A=(x4+3x2+\(\dfrac{9}{4}\) )+\(\dfrac{3}{4}\)

A=\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)

do \(\left(x^2+\dfrac{3}{2}\right)^2\ge0\forall x\)

=>\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=>A≥\(\dfrac{3}{4}\)

vậy A >1(đpcm)