\(P\left(x\right)=\dfrac{1}{2}x^3-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2+\dfrac{1}{2}x^4-x^2=-\dfrac{1}{2}x^3+\dfrac{1}{2}x^2=-\dfrac{1}{2}x^2\left(x-1\right)\)
Vì x(x-1) chia hết cho 2 với mọi số nguyên x
nên P(x) luôn là số nguyên nếu x nguyên
\(P\left(x\right)=\dfrac{1}{2}x^3-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2+\dfrac{1}{2}x^4-x^2=-\dfrac{1}{2}x^3+\dfrac{1}{2}x^2=-\dfrac{1}{2}x^2\left(x-1\right)\)
Vì x(x-1) chia hết cho 2 với mọi số nguyên x
nên P(x) luôn là số nguyên nếu x nguyên
cho đa thức P(x)=4x^3-\(\frac{3}{2}\) x^2-x+10 và đa thức Q(x)=10-1/2x-2x^2+4x^3
1 Tính giá trị của đa thức P(x) tại x =-2
2 tìm đa thức H(x) sao cho H(x)+Q(x)=P(x)
Chứng minh rằng H(x) nhận giá trị nguyên với mọi x
Cho đa thức : Q(x)= x(x^2/2−1/2*x^3+1/2*x) -(−1/2*x^4+x^2).chứng minh rằng Q(x) nhận giá trị nguyên với mọi số nguyên x
Chứng minh rằng đa thức Q(x)=x.(x^2/2-1/2 x^3+1/2x)-(x^3/3-1/2x^4+x^2-x/3) đạt giá trị nguyên
Chứng minh rằng đa thức x^4+2x^2+1 luôn nhận giá trị dương với mọi x
Cho đa thức: Q(x)=x(x^2/2-1/2*x^3+1/2*x)-(-1/2*x^4+x^2). Chứng minh rằng Q(x) nhân giá trị nguyên với mọi số nguyên x
Cho đa thức: Q(x)=x(x^2/2-1/2*x^3+1/2*x)-(-1/2*x^4+x^2). Chứng minh rằng Q(x) nhân giá trị nguyên với mọi số nguyên x
Cho 2 đa thức
P= \(x^3-2x^2y+x^2+1\)
Q=\(y^4-3x^3+2x^2y+2x^3+2\)
Chứng tỏ rằng trong hai đa thức P, Q luôn tồn tại một đa thức nhận giá trị không âm với mọi số thực x, y.
Giúp với.
Cho \(P\left(x\right)=x\left(\frac{x^2}{2}-\frac{1}{2}x^3+\frac{1}{2}x\right)-\left(\frac{x}{3}-\frac{1}{2}x^4+x^2-\frac{x}{3}\right)\)
Chứng minh rằng đa thức P(x) nhận giá trị nguyên với mọi số nguyên x
Cho đa thức : \(Q\left(x\right)=x\left(\frac{x^2}{2}-\frac{1}{2}x^3+\frac{1}{2}x\right)-\left(-\frac{1}{2}x^4+x^2\right)\)
a/ Tìm bậc của đa thức Q(x)
b/Tính Q(1/2)
c/Chứng minh rằng Q(x) nhận giá trị nguyên với mọi số nguyên x