Tìm GTLN của M=-5x^2-y^2+2xy+2y+2x-3
giúp mk1 bài toán nhé:
tìm GTLN của M=-5x^2 - y^2+2xy+2y+2x-3.
Giúp Mị với. Mị dành cả tuổi thanh xuân để làm mà ko ra, huhu :((
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)
\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)
\(P_{max}=1\) khi \(x=y=z=1\)
Tìm GTLN hoặc GTNN
2x^2+y^2-2xy-2x+3
2xy+10y-x^2-2y^2-2x
a, = x^2 -2xy +y^2 +(x^2-2x+1)+2
= (x-y)^2 + (x-1)^2 + 2
GTNN bằng 2 khi: x-y=0 và x-1=0
Suy ra: x = y = 1
Vậy GTNN của biểu thức trên là: 2 tại x=y=1
b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17
= -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17
= -(x-y+1)^2 -(y-4)^2 +17
GTLN bằng 17 khi: x-y+1 =0 và y-4=0
x-4+1=0 và y=4
x=3 và y=4
Vậy GTLN của biểu thức là 17 tại x=3,y=4.
Chúc bạn học tốt.
1.Tìm GTLN của biểu thức :
C= -2x^2+3x+1
D= -2x^2+0,5-8
E= -5x^2-4x-19/5
F= -x^2-y^2+xy+2x+2y
G= -x^2+2xy-4y^2+2x+10y+5
H= -x^2-2y^2-2xy+2x-2y-15
2. Tìm GTNN
B=(x^2+5x+5).[(x+2).(x+3)+1]
D= 2x^2+2xy+y^2-2x+2y+2
E= x^2+xy+y^2-3x-3y
F= x^4-8xy-x^3y+x^2y^2-xy^3+y^4+200
Các bạn giúp mình giải với ạ T__T
Đề bài: Tìm GTLN của biểu thức: ( theo hằng đẳng thức đáng nhớ )
9. -5x mũ 2 - y mũ 2 - 4xy + 10x + 2y - 12
10. -x mũ 2 - 5/2y mũ 2 - 2xy - 2x + y - 4
1 cho biểu thức A=5x(xy^2-2xy)-5x^2y^2. Rút gọn A .b) Tính GT của A khi x=-1/2 ,y=2
2. Tìm GTLN của bt A = |x-7|-|x-9|.Q= |x-2|+|x-8| b) tìm GTLN của bt P= 9-2|x-3|
Tìm giá trị nhỏ nhất của biểu thức:
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)
\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)
\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y
=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(M_{min}=2002\)
Tìm gtln
A=-x^2+5x+3
B=-x^2-2y^2-2xy-2x+2y+2013
C=\(\frac{2018}{X^2-22x+122}\)
tìm GTNN của : M=5x2 +y2-2x+2y+2xy+2014
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)