(x^2+x)^2+4x^2+4x-12
mik cần gấp ạ
giả pt
1, √x^2=1
2, √4x^2-4x+1=3
3, √x^2-4+√x^2+4x+4=0
4, √x^2-4x+3=x-3
Lời giải:
a. $\sqrt{x^2}=1$
$\Leftrightarrow |x|=1$
$\Leftrightarrow x=\pm 1$
b. $\sqrt{4x^2-4x+1}=3$
$\Leftrightarrow \sqrt{(2x-1)^2}=3$
$\Leftrightarrow |2x-1|=3$
$\Leftrightarrow 2x-1=\pm 3$
$\Leftrightarrow x=-1$ hoặc $x=2$
3. ĐKXĐ: $x^2\geq 4$
$\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0$
Do $\sqrt{x^2-4}\geq 0; \sqrt{x^2+4x+4}\geq 0$ với mọi $x\in$ ĐKXĐ nên để tổng của chúng bằng $0$ thì:
$\sqrt{x^2-4}=\sqrt{x^2+4x+4}=0$
$\Leftrightarrow (x-2)(x+2)=(x+2)^2=0$
$\Leftrightarrow x=-2$
4.
PT \(\Leftrightarrow \left\{\begin{matrix} x-3\geq 0\\ x^2-4x+3=(x-3)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x^2-4x+3=x^2-6x+9\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 2x=6\end{matrix}\right.\Leftrightarrow x=3\)
Ý 1:
\(\sqrt{x^2}=1\\ \Leftrightarrow\left|x\right|=1\\ Vậy:x=1.hoặc.x=-1\\ S=\left\{\pm1\right\}\)
Ý 2:
\(\sqrt{4x^2-4x+1}=3\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\\ \Leftrightarrow\left|2x-1\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ Vậy:S=\left\{-1;2\right\}\)
3: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>căn x+2=0
=>x+2=0
=>x=-2
4: =>\(\left\{{}\begin{matrix}x>=3\\x^2-4x+3=x^2-6x+9\end{matrix}\right.\Leftrightarrow x=3\)
Giải PT: x^2-4x+12 / x^2-4x+6 = x^2-4x+8
Đặt \(x^2-4x=t\)
Phương trình \(\Leftrightarrow\frac{t+12}{t+6}=t+8\Leftrightarrow t+12=\left(t+6\right)\left(t+8\right)\)
\(\Leftrightarrow t+12=t^2+14t+48\Leftrightarrow t^2+13t+36=0\Leftrightarrow\left(t+4\right)\left(t+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-4\\t=-9\end{cases}}}\)
Với \(t=-4\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Với \(t=-9\Rightarrow x^2-4x+9=0\)vô nghiệm vì \(\Delta=16-36=-20< 0\)
Vậy phương trình có nghiệm x=2
(x^2 + x )^2 + 4x^2 + 4x - 12
(x² + x)² + 4x² + 4x - 12
= (x² + x)² + 4(x² + x) + 4 - 16
= (x² + x + 2)² - 4²
= (x² + x + 2 - 4)(x² + x + 2 + 4)
= (x² + x - 2)(x² + x + 6)
a, (x+10/4x-8) . (4-2x/x+2)
b, (1-4x^2/x^2+4x) : (2-4x/3x)
c, ( 4y^2/7x^4) : (-8y/35x^2)
d, (x^2-4/3x+12) . (x+4/2x-4)
a: \(\dfrac{x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{x+10}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-\left(x+10\right)}{2\left(x+2\right)}\)
b: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(x-2\right)}\)
\(=\dfrac{3\left(2x-1\right)\left(2x+1\right)}{2\left(x-2\right)\left(x+4\right)}\)
c: \(=\dfrac{4y^2}{7x^4}\cdot\dfrac{35x^2}{-8y}=\dfrac{5}{x^2}\cdot\dfrac{-1}{2}\cdot y=\dfrac{-5y}{2x^2}\)
d: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
thực hiện phép tính
a, x+10/4x-8 x 4-2x/x+2
b, 1-4x^2/x^2+4x : 2-4x/3x
c, 4y^2/7x^4 : (-8y/35x^2)
d, x^2-4/3x+12 x x+4/2x-4
a.(x+10) /(4*x)-8* 4 -(2*x)/x+2
-(127*x-10)/(4*x)
(5/2-127*x/4)/x
I : Đặt biến phụ
a) ( x^2+x)^2-14(x^2+x)+24
b) (x^2+x)^2+4x^2+4x-12
c) x^4+2x^3+5x^2+4x-12
help me
a: =(x^2+x-6)(x^2+x-8)
=(x+3)(x-2)(x^2+x-8)
b: =(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
c: =x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12
=(x-1)(x^3+3x^2+8x+12)
=(x-1)(x^3+2x^2+x^2+2x+6x+12)
=(x-1)(x+2)(x^2+x+6)
phan tich cac da thuc sau thanh nhan tu a)x^2+4x+3 b) 4x^2+4x-3 c) x^2-x-12 d)4x^4+4x^2y^2-8y^4
a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)
b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)
c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)
d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)
a) \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
c) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
\(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
I : Đặt biến phụ
a) (x^2+x)^2-14(x^2+x)+24
b) ( x^2+x )^2+4x^2+4x-12
c) x^4+2x^3+5x^2+4x-12
các bạn giúp mik với
a,(x^2+x)^2+4x^2+4x-12