25y2+10y8+1
Phân tích đa thức thành nhân tử
a. 25y2 + 10y8 + 1
b.(x - 1)^4 - 2(x^2 - 2x + 1)^2 + 1
c. (x+1)(x+2)(x+3)(x+4) - 24
d. (x^2 +4x +8)^2 +3x(x^2+4x+8) + 2x^2
e.x^4 + 6x^3+7x^2-6x+1
a) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
X4 – 14x3 + 71x2 – 154x + 120
Giúp mik với ạ!!!!
a) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
b) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik vs
a: \(\left(x^3-x^2+x\right)\left(121-25y^2-10y\right)-\left(x^3-x^2+x\right)-\left(121-25y^2-10y\right)+1\)
\(=\left(x^3-x^2+x\right)\left(120-25y^2-10y\right)-\left(120-25y^2-10y\right)\)
\(=\left(120-25y^2-10y\right)\left(x^3-x^2+x-1\right)\)
\(=-\left[\left(25y^2+10y+1\right)-121\right]\left[x^2\left(x-1\right)+\left(x-1\right)\right]\)
\(=-\left(5y-10\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)
\(=-5\left(y-2\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)
b: \(x^4-14x^3+71x^2-154x+120\)
\(=x^4-5x^3-9x^3+45x^2+26x^2-130x-24x+120\)
\(=\left(x-5\right)\left(x^3-9x^2+26x-24\right)\)
\(=\left(x-5\right)\left(x^3-4x^2-5x^2+20x+6x-24\right)\)
\(=\left(x-5\right)\left(x-4\right)\left(x^2-5x+6\right)\)
\(=\left(x-5\right)\left(x-4\right)\left(x-3\right)\left(x-2\right)\)
a) -25x6 - y8+ 10x3y4
b) \(\dfrac{1}{4}\)x2- 5xy + 25y2
b: \(=\left(\dfrac{1}{2}x-5y\right)^2\)
Thực hiện phép tính:
1) ( x2 - 4xy + 4y2) : ( x - 2y )
2) ( 25x2 + 2xy + 1/25y2 ) : ( 5x + 1/5y)
1) Ta có: \(x^2-4xy+4y^2\)
\(=x^2-2.x.2y+\left(2y\right)^2\)
\(=\left(x-2y\right)^2\)
Phép tính trở thành: \(\left(x-2y\right)^2:\left(x-2y\right)=x-2y\)
2) Ta có: \(25x^2+2xy+\dfrac{1}{25}y^2\)
\(=\left(5x\right)^2+2.5x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\)
\(=\left(5x+\dfrac{1}{5}y\right)^2\)
Phép tính trở thành: \(\left(5x+\dfrac{1}{5}y\right)^2:\left(5x+\dfrac{1}{5}y\right)=5x+\dfrac{1}{5}y\)
1) (x² - 4xy + 4y²) : (x - 2y)
= (x - 2y)² : (x - 2y)
= x - 2y
2) (25x² + 2xy + 1/25 y²) : (5x + 1/5 y)
= 5x + 1/5 y)² : (5x + 1/5 y)
= 5x + 1/5 y
Bài 21: Tính giá trị của biểu thức.
B= 25x2-2xy+1/25y2 với x= -1/5 y=-5
\(B=25x^2-2xy+\dfrac{1}{25}y^2=\left(5x\right)^2-2.5x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\)
\(=\left(5x-\dfrac{1}{5}y\right)^2\)
Thay x = -1/5 ; y = -5 ta được : \(\left(-1+1\right)^2=0\)
Bài 3: Phân tích đa thức thành nhân tử
a) x2 + 4xy - 9 + 4x2
b) x2 - 1 - 12xy + 36y2
c) 10xy - x2 - 25y2 + 36
\(a,Sửa:x^2+4xy-9+4y^2=\left(x+2y\right)^2-9=\left(x+2y-3\right)\left(x+2y+3\right)\\ b,=\left(x-6y\right)^2-1=\left(x-6y-1\right)\left(x-6y+1\right)\\ c,=36-\left(x-5y\right)^2=\left(6-x+5y\right)\left(6+x-5y\right)\)
e/ 94 x2 – 25y2
f/ x2 - xy + 14 y2
\(\dfrac{9}{4}x^2-25y^2=\left(\dfrac{3}{2}x-5y\right)\left(\dfrac{3}{2}x+5y\right)\)
\(x^2-xy+\dfrac{1}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2\)
phân tích đa thức thành nhân tử:
a,8y2-1/8
b,1/25y2-64m2
gợi ý : dùng phương pháp hằng đẳng thức
giải chi tiết hộ với em mới học
a,\(8y^2-\dfrac{1}{8}\)
=\(\dfrac{1}{8}\left(64y^2-1\right)\)
=\(\dfrac{1}{8}\left(8y-1\right)\left(8y+1\right)\)
b,\(\dfrac{1}{25}y^2-64m^2\)
=\(\left(\dfrac{1}{5}y-8m\right)\left(\dfrac{1}{5}y+8m\right)\)
Khai triển 4 x 2 – 25 y 2 theo hằng đẳng thức ta được
A. (4x – 5y)(4x + 5y)
B. (4x – 25y)(4x + 25y)
C. (2x – 5y)(2x + 5y)
D. ( 2 x – 5 y ) 2
Ta có 4 x 2 – 25 y 2 = ( 2 x ) 2 – ( 5 y ) 2 = ( 2 x – 5 y ) ( 2 x + 5 y )
Đáp án cần chọn là: C