tìm GTNN của
A= (x+2)^2 + (x-1)^2
Cảm ơn ae VN, giúp mk nhé
tìm gtnn của
a, A=|2=4x|-6
b, 1-4/x^2+1
GIÚP MIK VS MIK CẢM ƠN
\(a,A=\left|2-4x\right|-6\ge-6\\ A_{min}=-6\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,x^2+1\ge1\Leftrightarrow B=1-\dfrac{4}{x^2+1}\ge1-\dfrac{4}{1}=-3\\ B_{min}=-3\Leftrightarrow x=0\)
các bạn giúp mình với (x^4-1)^2+(x^2+1)^2
cảm ơn nhiều
`(x^4-1)^2+(x^2+1)^2`
`=x^8-2x^4+1+x^4+2x^2+1`
`=x^8-x^4+2x^2+2`
\(\left(x^4-1\right)^2+\left(x^2+1\right)^2=\left(x^2-1\right)^2.\left(x^2+1\right)^2+\left(x^2+1\right)^2\)
\(=\left(x^2+1\right)^2\left[\left(x^2-1\right)^2+1\right]=\left(x^2+1\right)^2\left(x^4-2x^2+2\right)\)
`(x^4-1)^2+(x^2+1)^2`
`=[(x^2)^2-1^2]^2+(x^2+1)^2`
`=(x^2+1)^2 .(x^2-1)^2 +(x^2+1)^2`
`=(x^2+1)^2 [(x^2-1)^2+1]`
Tìm GTNN của
a/A=\(a^2+5b^2-4ab-2b+5\)
b/B=\(\left(x-y\right)^2+\left(y-3^{ }\right)^2+\left(x-3\right)^2+2021\)
Ai giúp mk vs ạ ai nhanh mk tick nha :3
b: \(B\ge2021\forall x,y\)
Dấu '=' xảy ra khi x=y=3
Tìm giá trị nhỏ nhất của
a) A=\(x^2-6x+10\)
b) B=\(3x^2+x-2\)
c) C=\(\dfrac{4}{x^2}-\dfrac{3}{x}-1\)
d) D=\(x^2+y^2-x+3y+7\)
Lm nhanh giúp mk nhé! Mk đang cần gấp lắm
a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\). \(min_A=1\)
b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\). \(min_B=\dfrac{-25}{12}\)
c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-3\). \(min_C=\dfrac{-25}{16}\)
d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\). \(min_D=\dfrac{9}{2}\)
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ
Tim GTNN của
a/C=\(x^2+4y^2+9z^2-4x+12y-24z+30\)
b/D=\(20x^7+18y^2-24xy-4x-12+2016\)
Ai giúp mk vs ai nhanh mk tick nha :3
tìm GTNN củaA=2|x+1|+|2x-3|
\(2\left|x+1\right|+\left|2x-3\right|\)
\(=\left|2x+2\right|+\left|2x-3\right|\)
\(=\left|2x+2-2x+3\right|\ge5\)
\(A_{min}=5\)
Tìm GTNN của
a. A= x^2 -5x +7
b. B= 2x^2 - 8x + 15
a) Ta có: \(A=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
b) Ta có: \(B=2x^2-8x+15\)
\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu '=' xảy ra khi x=2
a. `A=x^2-5x+7`
`=x^2-2.x. 5/2 + (5/2)^2 +3/4`
`=(x-5/2)^2 + 3/4`
`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`
b) `B=2x^2-8x+15`
`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`
`=(\sqrt2x-2\sqrt2)^2+7`
`=> B_(min)=7 <=> x=2`.
a) \(A=x^2-5x+7\)
\(=x^2-2.\dfrac{5}{2}x+\left(\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Mặt khác, ta có \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\) \(\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi \(\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(A_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{5}{2}\)
b) \(B=2x^2-8x+15\)
\(=4x^2-2.2x.2+2^2+11\)
\(=\left(2x-2\right)^2+11\)
Vì \(\left(2x-2\right)^2\ge0\forall x\) nên \(\left(2x-2\right)^2+11\ge11\forall x\)
Dấu "=" xảy ra khi \(\left(2x-2\right)^2=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy \(B_{min}=11\) khi \(x=1\)
Tìm GTNN của
\(B=|x-1|+|x-2|\)
Các bn giúp mk nha.cảm ơn nhìu
B = | x + 1 | + | x - 2 | lớn hơn hoặc bằng | x + 1 + 2 - x | = 3
Dấu "=" xảy ra <=>\(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}\Rightarrow}-1\le x\le2}\)
Vậy,..........
À mà \(B=|x-1|+|x-2|\) chứ ko phải \(B=|x+1|+|x-2|\) nha bn
B = | x - 1 | + | x + 2 | \(\ge\)| x + 1 + 2 - x | = 3
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}\Rightarrow}-1\le x\le2}\)
Vậy ....................................