Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Mai Phương
Xem chi tiết
Sana .
9 tháng 2 2021 lúc 8:33

A=2+22+23+...+220A=2+22+23+...+220

2A=22+23+24+...+2212A=22+23+24+...+221

2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)

A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2

A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯

Vậy chữ số tận cùng cả A là 0

Khách vãng lai đã xóa
Lê Thị Mai Phương 24
Xem chi tiết
le huu trung kien
8 tháng 9 2017 lúc 15:25

a bang 2

b i don't know

Ichigo Sứ giả thần chết
Xem chi tiết
đinh văn tiến d
Xem chi tiết
đinh văn tiến d
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 16:03

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

Thai Vu
Xem chi tiết

Giải:

a) \(A=1+2+2^2+2^3+...+2^{2021}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2022}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\) 

\(A=2^{2022}-1\) 

Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\) 

b) Từ câu (a), ta có:

\(A=2^{2022}-1\) 

\(A=2^{2020}.2^2-1\) 

\(A=\left(2^4\right)^{505}.4-1\) 

\(A=16^{505}.4-1\) 

\(A=\left(\overline{...6}\right)^{505}.4-1\) 

\(A=\overline{...6}.4-1\) 

\(A=\overline{...4}-1\) 

\(A=\overline{...3}\) 

Vậy chữ số tận cùng của A là 3

c) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\) 

\(A=1.3+2^2.3+...+2^{2020}.3\) 

\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\) 

Vậy \(A⋮3\left(đpcm\right)\)  

d) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\) 

\(A=1.7+2^3.7+...+2^{2019}.7\) 

\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)  

Vậy \(A⋮7\left(đpcm\right)\) 

Chúc bạn học tốt!

Trunghoc2010
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 10 2021 lúc 13:48

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7

     

 

nguyễn kiều ngọc diệp
Xem chi tiết
Nguyễn Linh Chi
28 tháng 11 2019 lúc 10:44

a) Xét tích : 1 x  2  x 3 x  4 x 5 x 6 x ....x  20.

Có: 5 = 5 x 1 

      10 = 2 x 5

       15 = 3 x 5

      20 = 4 x 5

Trong tích trên có thể phân tích được thành 4 số 5 và nhiều hơn 4 số 2.

=> Tích trên có thể phân tích đc thành 4 số 10.

=> Tích sau có tận cùng 4 số 0.

b. 

Có : 25 = 5 x 5 

      30 = 6 x 5

       35 = 7 x 5

      40 = 8 x 5

      45 = 9x 5

      50 = 5 x 5 x 2

Trong tích trên có thể phân tích được thành 8 số 5 và nhiều hơn 8 số 2.

=> Tích trên có thể phân tích đc thành 8 số 10.

=> Tích sau có tận cùng 8 số 0.

      

Khách vãng lai đã xóa
Đố Ngọc Mai
29 tháng 3 2020 lúc 9:47

8 số 0 đúng 100%

Khách vãng lai đã xóa
Xem chi tiết
Lưu Quang Trường
19 tháng 2 2021 lúc 21:33

chữ số tận cùng là số 0

Trương Huy Hoàng
19 tháng 2 2021 lúc 21:39

Ta có: 2 + 22 + 23 + ... + 220

= (2 + 22 + 23 + 24) + (25 + 2+ 27 + 28) + ... + (217 + 218 + 219 + 220)

= (2 + 22 + 23 + 24) + 24(2 + 22 + 23 + 24) + 28(2 + 22 + 23 + 24) + 216(2 + 22 + 23 + 24)

= (1 + 24 + 28 + 216)(2 + 22 + 23 + 24)

= 30(2 + 22 + 23 + 24)

Vì 30 có tận cùng là 0 nên 30(2 + 22 + 23 + 24) có tận cùng là 0

hay 2 + 22 + 23 + ... + 220 có tận cùng là 0

Chúc bn học tốt!

Nguyễn Trọng Cường
19 tháng 2 2021 lúc 21:40

\(\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+\left(2^6+2^8\right)+...+\left(2^{17}+2^{19}\right)+\left(2^{18}+2^{20}\right)=10+2\cdot10+2^2\cdot10+2^4\cdot10+2^5\cdot10+...+2^{16}\cdot10+2^{17}\cdot10=10\left(1+2+2^4+2^5+...+2^{16}+2^{17}\right)\) Sẽ có tận cùng là chữ số 0