Tìm GTLN của:
\(D=-3x^2-9x-7\)
Tìm GTLN của A=3x^2+9x+17)/(3x^2+9x+7)
Ta có \(A=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{\left(3x^2+9x+7\right)+10}{3x^2+9x+7}=\)
\(=\frac{3x^2+9x+7}{3x^2+9x+7}+\frac{10}{3x^2+9x+7}\)
\(=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}\)
Từ đây suy ra A có GTLN là 41, khi \(x=-\frac{3}{2}\)
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
a, Tìm GTNN
A = ( 2x^2 - 16x + 43)/(x^2 - 8x + 22)
b, Tìm GTLN
B = (3x^2 + 9x + 17)/(3x^2 + 9x + 7)
A=[2(x^2-8x+22)-1]/(x^2-8x+22)
A=2-1/[(x-4)^2+6]
A nho nhat khi (x-4)^2=0=> x=4
min(A)=2-1/6
Tim gtnn, gtln neu co:
A= 3x^2 +9x+17/3x^2 + 9x+7
B= 2x^2-16x+41/x^2-8x+22
C= -16/5x^2 + 20x + 26
D= 1/3x^2 - 9x +15
\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)
Câu khác giải TT
Tìm GTLN của:
`B=-9x^2-3x-1`
\(B=-9x^2-3x-1\\ =-9\left(x^2+\dfrac{1}{3}x\right)-1\\ =-9\left(x^2+2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{3}{4}\\ =-9\left(x+\dfrac{1}{6}\right)^2-\dfrac{3}{4}\)
Do \(\left(x+\dfrac{1}{6}\right)^2\ge0\forall x\Rightarrow-9\left(x+\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow B=-9\left(x+\dfrac{1}{6}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{6}=0\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy \(B_{max}=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{6}\)
Tìm GTLN và GTNN của
\(\dfrac{3x^2-2xy+y^2}{9x^2-6xy+2y^2}\)
Tìm GTLN của biểu thức A=(-3x3+5x2-9x-15):(3x+5)
Sửa chút đề nhé!
Với x khác -5/3
A= (3x^3+5x^2-9x-15):(3x+5)
= [x^2(3x+5)-3(3x+5)]:(3x+5)
=(x^2-3) (3x+5):(3x+5)
=x^2-3\(\ge-3\)
Dấu '=' xảy ra khi x=0
max A=-3 khi x=0
Tìm GTLN của biểu thức
I= 3x - 9x² - 1
`I=3x-9x^{2}-1`
`I=-(9x^2-3x+1)`
`I=-(9x^2-3x+1/4+3/4)`
`I=-(3x-1/2)^{2}-3/4`
Vì `-(3x-1/2)^2 <= 0` với mọi `x`
`=>-(3x-1/2)^2-3/4 <= -3/4` với mọi `x`
Hay `I <= -3/4` với mọi `x`
`=>I_{mi n}=-3/4 <=>x=1/6`
Tìm gtln -x^2+5x và-3x^2-9x+6
\(-3x^2-9x+6\)
\(=-3\left(x^2+3x-2\right)\)
\(=-3\left(x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{17}{4}\right)\)
\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)