Phân tích các đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
a) \(4x^4-21x^2y^2+y^4\)
b) \(x^5-5x^3+4x\)
c) \(x^3+5x^2+3x-9\)
d) \(x^{16}+x^8-2\)
Phân tích đa thức thành các nhân tử:
a)x^2-(a+b)x+ab
b)7x^3-3xyz-21x^2+9z
c)4x+4y-x^2(x+y)
d)y^2+y-x^2+x
e)4x^2-2x-y^2-y
f)9x^2-25y^2-6x+10y
Phân tích đa thức thành nhân tử
a)(5x-4)(4x-5)-(x-3)(x-2)-(5x-4)(3x-2)
b)(5x-4)(4x-5)+(5x-1)(x+4)+3(3x-2)(4-5x)
c)(5x-4)^2+(16-25x^2)+(5x-4)(3x+2)
d)x^4-x^3-x+1
e)x^6-x^4+2x^3+2x^2
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
BT3: Phân tích các đa thức sau thành nhân tử bằng phương pháp cách tách hạng tử. a, x^3 + 4x^2 - 21x b, 5x^3 + 6x^2 + x c, x^3 - 7x + 6 d, 3x^3 + 2x - 5
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
a, ( 4x + 5)3 - 16x - 17
b, (x2 - 2x)3 -3x2 +6x + 2
c, (x2 +2y2 + 1)2 - 5x2 -10y2 - 11
d, (3x+4)2 - (6x + 8)(4x + 5) + (4x + 5)2
Phân tích các đa thức sau thành nhân tử:
a) 4x4 - 21x2y2 + y4
b) x5 - 5x3 + 4x
c) x3 + 5x2 + 3x - 9
d) x16 + x8 - 2
\(4x^4-21x^2y^2+y^4\)
\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)
\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
\(x^5-5x^3+4x\)
\(=x\left(x^4-5x^2+4\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 4x4 - 21x2y2 + y4
b) x5 - 5x3 + 4x
c) x3 + 5x2 + 3x - 9
d) x16 + x8 - 2
\(a,4x^4-21x^2y^2+y^4=\left(2x^2\right)^2+4x^2y^2+y^4-4x^2y^2-21x^2y^2\)
\(=\left(2x^2+y^2\right)^2-25x^2y^2\)
\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
\(b,x^5-5x^3+4x=x\left(x^4-5x^2+4\right)\)
\(=x\left(x^4-4x^2-x^2+4\right)\)
\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]\)
\(=x\left(x^2-4\right)\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
\(c,x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x^2+3x+3x+9\right)\)
\(=\left(x-1\right)\left[x\left(x+3\right)+3\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x+3\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
\(d,x^{16}+x^8-2=x^{16}+2x^8-x^8-2\)
\(=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)
\(=\left(x^8-1\right)\left(x^8+2\right)\)
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử :
1) x^3 + 5x^2 + 3x - 9
2) x^3 + 9x^2 + 11x - 21
3) x^3 + 4x^2 - 7x - 10
4) x^5 - 5y^3 + 4x
5) 4x^4 - 21x^27^2 + y^4
chân thành cảm ơn ạ
mình cần gấp lắm
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG
8) x2(x – 2y) + 3x(x – 2y) 9)(5x+2)(x-3)-x(x-3)
10(5x-3)(x+2)-2x(x+2)
8: \(=\left(x-2y\right)\cdot x\cdot\left(x+3\right)\)
9: \(=\left(5x+2\right)\left(x-3\right)-x\left(x-3\right)\)
\(=\left(x-3\right)\left(4x+2\right)\)
=2(2x+1)(x-3)
3: \(=2\left(x+2\right)\left(25x-15-x\right)\)
\(=2\left(x+2\right)\left(24x-15\right)\)
=6(x+2)(8x-5)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG
8) x2(x – 2y) + 3x(x – 2y) 9)(5x+2)(x-3)-x(x-3)
10)(5x-3)(x+2)-2x(x+2)
Bài 1 : Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
1.( x^2 - x )^2 +3(x^2 - x) +2
2.( x^2 + 3x)^2 + 7x^2 + 21x + 10
3.( x^2 + 5x)^2 + 2x - 5x^2 + 24
không cần phương pháp đó đâu, mik có cách này hay hơn nè
tìm nghiệm của đthức trên
nếu nghiệm là số dương thì khi phân tích xong sẽ có 1 tsố là (x-1)
nếu nghiệm là số âm thì...........................................1..........(x+1)
VD: phân tích thành nhân tử: 2x^2+5x-3
Nghiệm của đa thức trên là 3
=> 2x^2+6x-x-3
=> 2x(x+3)-1(x+3)
=> (2x-1)(x+3)
ĐÓ, KICK MIK NHA
Nhưng phải làm theo phương pháp đặt ẩn phụ
1, (x2 - x)2 + 3(x2 -x) +2 (*)
đặt x2 - x = a
=> a2 + 3.a +2 = a2 + a + 2a + 2
=a.(a+1) +2.(a + 1)
= (a+1).(a+2)
thay x2 - x=a vào (*) ta có
(x2 - x +1 ).(x2 - x+2)