Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lu nekk

BT3: Phân tích các đa thức sau thành nhân tử bằng phương pháp cách tách hạng tử. a, x^3 + 4x^2 - 21x b, 5x^3 + 6x^2 + x c, x^3 - 7x + 6 d, 3x^3 + 2x - 5

HT.Phong (9A5)
22 tháng 10 2023 lúc 7:15

a) \(x^3+4x^2-21x\)

\(=x\left(x^2+4x-21\right)\)

\(=x\left(x^2-3x+7x-21\right)\)

\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)

\(=x\left(x-3\right)\left(x+7\right)\)

b) \(5x^3+6x^2+x\)

\(=x\left(5x^2+6x+1\right)\)

\(=x\left(5x^2+5x+x+1\right)\)

\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(5x+1\right)\)

c) \(x^3-7x+6\)

\(=x^3+2x^2-3x-2x^2-4x+6\)

\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)

\(=\left(x-2\right)\left(x^2+2x-3\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)

d) \(3x^3+2x-5\)

\(=3x^3+3x^2+5x-3x^2-3x-5\)

\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)

\(=\left(x-1\right)\left(3x^2+3x+5\right)\)


Các câu hỏi tương tự
Lê Trinh
Xem chi tiết
Phan Thị Khánh Ly
Xem chi tiết
Phan Thị Khánh Ly
Xem chi tiết
Dương Tử Thiên
Xem chi tiết
Phan Hà An
Xem chi tiết
Nguyễn Hoàn Như Ý
Xem chi tiết
Phan Thị Khánh Ly
Xem chi tiết
Nhã lí
Xem chi tiết
Mai Quỳnh
Xem chi tiết