Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vuvunomi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 22:46

a: Xét (O) có

ΔBNC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét (O) có 

ΔBMC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét ΔABC có

BN là đường cao

CM là đường cao

BN cắt CM tại H

Do đó: AH\(\perp\)BC

Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2023 lúc 14:48

Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đo: ΔBNC vuông tại N

Xet ΔABC có

BN,CM là các đường cao

BN cắt CM tại H

Do đó; H là trực tâm

=>AH vuông góc với BC

VõThị Quỳnh Giang _
Xem chi tiết

ối chồi em mới lớp 7 thôi

Khách vãng lai đã xóa
Flamigo
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2023 lúc 23:33

a: Xét (O) có

ΔBMC nộitiếp

BC là đường kính

=>ΔBMC vuông tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

=>ΔBNC vuông tại N

Xét ΔABC có

BN,CM là các đường cao

BN cắt CM tại H

=>H là trực tâm

=>AH vuông góc với BC

b: Xét tứ giác AMHN có

góc AMH+góc ANH=180 độ

=>AMHN là tứ giác nội tiếp

I là trung điểm của AH

c: góc IMO=góc IMH+góc OMH

=góc IHM+góc OCH

=90 độ-góc BAH+góc BCM

=90 độ

=>OM là tiếp tuyến của (I)

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 22:29

a: Xét \(\left(O\right)\) có

\(\widehat{CNB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{CNB}=90^0\)

hay CM\(\perp\)AB

Xét \(\left(O\right)\) có 

\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BNC}=90^0\)

hay BN\(\perp\)AC

b: Xét ΔABC có

BN là đường cao ứng với cạnh AC

CM là đường cao ứng với cạnh AB

BN cắt CM tại H

Do đó: AH\(\perp\)BC

shoppe pi pi pi pi
Xem chi tiết
Minh Tú Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 21:00

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC

Diệu Trần Thị Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 10:14

c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO

OH vuông góc MN

=>MN là đường kính của (H)

=>HM=HN

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 2 2018 lúc 15:59

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Chứng minh AI BC

Ta có ∠BEC = BDC = 90 0 (hai góc nội tiếp chắn nửa đườn tròn)

Khánh Lam
Xem chi tiết
Akai Haruma
10 tháng 2 lúc 22:07

Lời giải:
a. Ta có:

$\widehat{BNC}=\widehat{BMC}=90^0$ (góc nt chắn nửa đường tròn - cung BC)

$\Rightarrow BN\perp AC, CM\perp AB$

Tam giác $ABC$ có 2 đường cao $BN, CM$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.

b. Gọi $D$ là giao của $AH$ và $BC$. Do $H$ là trực tâm tam giác $ABC$ nên $AH\perp BC$ tại $D$.

Tam giác $BMC$ vuông tại $M$

$\Rightarrow$ trung tuyến $MO= \frac{BC}{2}=BO$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow BOM$ là tam giác cân tại $O$

$\Rightarrow \widehat{OMB}=\widehat{OBM}=90^0-\widehat{BCM}$

$=90^0-\widehat{DCH}=\widehat{MHA}=\widehat{MHE}(1)$

$CM\perp AB$ nên $AMH$ là tam giác vuông tại $M$

$\Rightarrow ME=\frac{AH}{2}=EH$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow MEH$ cân tại $E$

$\Rightarrow \widehat{MHE}=\widehat{EMH}(2)$

Từ $(1); (2)\Rightarrow \widehat{OMB}=\widehat{EMH}$

$\Rightarrow \widehat{OMB}+\widehat{OMC}=\widehat{EMH}+\widehat{OMC}$

$\Rightarrow \widehat{BMC}=\widehat{EMO}$

$\Rightarrow \widehat{EMO}=90^0$

$\Rightarrow EM\perp MO$ nên $EM$ là tiếp tuyến $(O)$
c.

Ta có:

$EM=\frac{AH}{2}=EN$

$OM=ON$

$\Rightarrow EO$ là trung trực của $MN$

Gọi $T$ là giao điểm $EO, MN$ thì $EO\perp MN$ tại $T$ và $T$ là trung điểm $MN$.

Xét tam giác $EMO$ vuông tại $M$ có $MT\perp EO$ thì:

$ME.MO = MT.EO = \frac{MN}{2}.EO$

$\Rightarrow 2ME.MO = MN.EO$

 

 

Akai Haruma
10 tháng 2 lúc 22:08

Hình vẽ: