Cho f(x) = \(\frac{1+\sqrt{1+x}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\) Tính f(\(\frac{\sqrt{3}}{2}\))
Cho f(x)=\(\frac{1+\sqrt{1+x}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\) và a=\(\frac{\sqrt{3}}{2}\).Tính f(a)
Cho f(x) = \(\frac{1+\sqrt{1+x}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\) Tính \(f\left(\frac{\sqrt{3}}{2}\right)\)
Diễn giải cách làm nhé chứ kết quả ấn máy tính thi mình cũng biết
Đk:...
\(f\left(x\right)=\frac{1+\sqrt{1+x}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}=\frac{1}{\sqrt{x+1}}+\frac{1}{x+1}-\frac{1}{\sqrt{1-x}}-\frac{1}{1-x}=\frac{-\sqrt{x+1}+\sqrt{1-x}}{\sqrt{1-x^2}}-\frac{2x}{1-x^2}\)
\(f\left(\frac{\sqrt{3}}{2}\right)=\frac{-\sqrt{\frac{\sqrt{3}}{2}+1}+\sqrt{1-\frac{\sqrt{3}}{2}}}{\sqrt{1-\frac{3}{4}}}-4\sqrt{3}=2.\left(\sqrt{1-\frac{\sqrt{3}}{2}}-\sqrt{1+\frac{\sqrt{3}}{2}}\right)-4\sqrt{3}\)
\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}-4\sqrt{3}=\left(\sqrt{3}-1\right)-\left(\sqrt{3}+1\right)-4\sqrt{3}=-2-4\sqrt{3}\)
cho f(x) = \(\frac{1+\sqrt{1+x}}{x+1}\) + \(\frac{1+\sqrt{1-x}}{x-1}\)và a = \(\frac{\sqrt{3}}{2}\)Tính f(a)
+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)
GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)
Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))
Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm
Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj
Vậy x = 1
B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)
ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)
Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)
\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)
\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)
Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)
Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)
Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)
\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)
\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)
\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)
\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)
\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)
\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)
Đặt \(\(\frac{1}{x}=a\)\)
\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)
Tự làm nốt , mai ra lớp t giảng lại cho ...
Mik ko ngờ bạn lại giải giỏi đến vậy
Mik ko giải được như vậy luôn !!!!
1b, Cho biểu thức F = \(\left(\frac{1}{x+3\sqrt{x}}-\frac{1}{\sqrt{x}+3}\right):\frac{1-\sqrt{x}}{x+6\sqrt{x}+9}\)
Với x > 0; x # 1
a, Rút gọn F
b, Tìm x để F = \(\frac{5}{2}\)
Cho [tex]f(x)=\sqrt[3]{\frac{x}{2}+\sqrt{\frac{x^2}{4}-1}} + \sqrt[3]{\frac{x}{2}-\sqrt{\frac{x^2}{4}-1}}[/tex] và [tex]g(x)=x^4-4x^2+2[/tex].
CMR: [tex]f(g(x))=g(f(x))[/tex].
Cho\(f\left(x\right)=\frac{1+\sqrt{1+x}}{1+x}+\frac{1-\sqrt[1]{1-x}}{x-1}\) vaf \(a=\frac{\sqrt{3}}{2}\). Tinh \(f\left(a\right)\)
giải pt
a) \(2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{5x-2}{x}\)
b) \(3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{5x-3}{2x}+9\)
c) \(\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{12-9x}{x}+6\)
d) \(\frac{x-1}{x}-2\sqrt{\frac{x-1}{x}}=3\)
e) \(\sqrt{\frac{x}{x-1}}+\sqrt{\frac{x-1}{x}}=\frac{3}{\sqrt{2}}\)
f) \(\sqrt{x-\frac{1}{x}}=\frac{1}{\sqrt{x}}-\sqrt{x}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)
Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)
\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)
\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)
\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)
b/ ĐKXĐ: ...
\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)
Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)
\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)
Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)
\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)
\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)
\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)
\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)
e/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{x-1}}=a>0\)
\(a+\frac{1}{a}=\frac{3}{\sqrt{2}}\Leftrightarrow a^2-\frac{3}{\sqrt{2}}a+1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=\sqrt{2}\\a=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{\frac{x}{x-1}}=\sqrt{2}\\\sqrt{\frac{x}{x-1}}=\frac{\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x-1\right)\\2x=x-1\end{matrix}\right.\)
f/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=\frac{1-x}{\sqrt{x}}\)
Bình phương 2 vế:
\(\frac{x^2-1}{x}=\frac{\left(1-x\right)^2}{x}\Leftrightarrow x^2-1=x^2-2x+1\)
\(\Rightarrow x=1\)
\(F=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{2\sqrt{x}+7}{x-4}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+1\right)\)
a,rút gọn
b,tính F biết x=9-\(4\sqrt{5}\)
c, tìm GTNN của F