Tìm GTNN,biết: \(x>0;y>0;x+y=1\)
\(E=\frac{1}{x^2y^2}-\frac{1}{x^2}-\frac{1}{y^2}\)
Cho x>0; y>0. Tìm GTNN của \(A=\sqrt{x}+\sqrt{y}\) biết \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\).
Tìm GTNN của A=x+y biết: x,y>0 và x+y=1
Tìm x để \(\sqrt{P}\) đạt GTNN biết P=\(\dfrac{x}{\sqrt{x}+1}\) và x>0,x khác 1
Tìm x để \(\sqrt{P}\) đạt GTNN biết P=\(\dfrac{x}{\sqrt{x}-1}\) và x>0,x khác 1
tìm GTNN xyz /[x+y]nhân[y+z]nhân[x+z] biết x,y,z>=0
Cái đề thế này ah
\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Vì \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)
\(\Rightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)
-_- Làm như thế để chết nhắm :v
Dấu = xảy ra x=y=z=0 => Hỏng .
@Aliba...
\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
áp dụng BĐT cô-si ta có :
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{zx}\)
nhân vế với vế ta có
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{x^2y^2z^2}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
\(\Leftrightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{xyz}{8xyz}=\frac{1}{8}\)
vậy GTNN là \(\frac{1}{8}\) khi và chỉ khi \(x=y=z=1\)
:)
tìm GTNN, GTLN của S=x+y biết x^2 + 3y^2 + 2xy - 10x - 14y + 18 = 0
Làm nốt phần còn lại của bạn Thắng
(x + y - 5)2 + 2(y - 1)2 - 9 = 0
<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)
\(\Leftrightarrow\left(S-5\right)^2\le9\)
\(\Leftrightarrow-3\le S-5\le3\)
\(\Leftrightarrow2\le S\le8\)
Vậy GTNN là 2 đạt được khi x = y = 1
GTLN là 8 đạt được khi (x, y) = (7, 1)
\(x^2+3y^2+2xy-10x-14y+18\)
\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)
\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)
....
x=7;y=±1 và x=y=1 và x=1; y=3 và x=y=3 và x=5;y=-1
1.Tìm x biết /4x/-/-13,5/ =/-7,5/
2.Tìm GTLN: C=3 - 5/2 . /2/5-x/
3.Tìm x,y biết:/x-2,5/ + /y+1,2/ = 0
4.Tìm GTNN: D=/x-500/ + /x-300/
mở dấu trị tuyệt đối ra rồi tính như bình thường
Tìm GTNN của A=(x+y)(x+z). Biết x,y,z >0 và xyz(x+y+z)=1
tìm gtnn của biểu thức biết x,y>0, x+y=1 : A=(1+2/x)^2+(1+2/y)^2
Áp dụng BĐT Bunhiacopxki dạng phân thức
\(A\ge\frac{\left(1+\frac{2}{x}+1+\frac{2}{y}\right)^2}{1+1}=\frac{\left[2+2\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\)
Theo BĐT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
hay \(\frac{\left(2+\frac{8}{x+y}\right)^2}{2}=\frac{\left(10\right)^2}{2}=\frac{100}{2}=50\)
Vậy \(A\ge50\)khi \(x=y=\frac{1}{2}\)
Cho x, y > 0 ; a, b là số cho trước. Biết a/x + b/y = 1 . Tìm GTNN của x + y.