cm phản chứng nếu a, b ,c là 3 số dương thì \(a^3+b^3+c^3\)≥3abc
Chứng minh rằng nếu a3 + b3 + c3 = 3abc và a,b,c là các số dương thì a=b=c.
Chứng minh rằng nếu a3+b3+c3=3abc và a, b, c là các số dương thì a=b=c
Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c
=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0
Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c
Vậy a=b=c
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\left(a+b+c>0\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)
#Thang Tran
Từ a3+b3+c3 =3abc suy ra a=b=c
Chứ không phải a=b=c suy ra a3+b3+c3 =3abc
CMR nếu: a^3+b^3+c^3=3abc và a,b,c là các số dương thì a=b=c.
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\left(a+b+c\right)\left(a^2-ab+b^2-bc+c^2-ca\right)=0\)\(Màa,b,c\ne0\Rightarrow a^2-ab+b^2-bc+c^2-ca=0\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
\(a,b,c\ne0\Rightarrow a-b=0;b-c=0;c-a=0\Rightarrow a=b=c\)
Chứng minh : Nếu a,b,c là các số dương khác nhau từng đôi một thì giá trị của đa thức a3+b3+c3-3abc luôn dương
Chứng minh rằng :
a, Nếu \(a^2+b^2=2ab\) thì a=b
b, Nếu \(a^3+b^3+c^3=3abc\) và a,b,c là các số dương thì a=b=c
c, Nếu \(a^4+b^4+c^4+d^4=4abcd\) và a,b,c,d là các số dương thì a=b=c=d
\(a^2+b^2=2ab\)
<=> \(a^2+b^2-2ab=0\)
<=> \(\left(a-b\right)^2=0\)
<=> \(a-b=0\)
<=> \(a=b\) (đpcm)
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
Xét: \(a^2+b^2+c^2-ab-bc-ca=0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
<=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
<=> \(a=b=c\)
=> đpcm
cách khác:
Áp dụng BĐT AM-GM ta đc:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu "=" xảy ra <=> \(a=b=c\)
c) bạn lm tương tự
Ta có a3 + b3 + c3 = 3abc
<=> (a + b)3 - 3ab(a + b) + c3 = 3abc
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
Khi a2 + b2 + c2 - ab - ac - bc = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)
Vậy a + b + c = 0
Nếu a, b, c là các số dương đôi một khác nhau thì giá trị của đa thức sau là số dương: A = a3 + b3 + c3 - 3abc
A = a3 + b3 + c3 - 3abc
= (a+b)3 - 3ab(a+b) + c3 - 3abc
= (a+b+c)(a2 + 2ab + b2 -ac -bc + c2) - 3ab (a+b+c)
=(a+b+c)(a2 + b2 + c2 - ab - bc - ac)
a+ b + c > 0 (dựa giả thiết)
a2 + b2 + c2 - ab - bc - ac > 0 (*)
Chứng minh (*)
\(a^2+b^2+c^2-ab-bc-ac=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)
chứng minh rằng nếu\(a^3+b^3+c^3=3abc\) và a, b, c là các số dương thì a=b=c
+ \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^2-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc-3ab\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) ( do \(a+b+c\ne0\) )\
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Ta có : \(a^3+b^3+c^3=3\cdot abc\)
\(\Rightarrow a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc=3abc\)
\(=>a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Lại có : a,c,b là các số dương=>a+b+c\(\ne0\)
Mà a+b+c=0 , \(a^2+b^2+c^2-ab-ac-bc=0\)
=>a=b=c(=0)(đpcm)
Chứng minh rằng nếu a3+b3+c3=3abc và a, b, c là các số dương thì a=b=c
Ta có:
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca=0\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\text{ (do }a+b+c>0\text{)}\)
\(\Leftrightarrow\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow a-b=b-c=c-a=0\)
\(\Leftrightarrow a=b=c\)
+ \(a^3+b^3+c^3=abc\) \(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) ( do a + b + c > 0 )
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)