tính tỉ số A\B biết
A=4\7.31+6\7.41+9\10.41+7\10.57
B=7\19.31+5\19.43+3\23.43+11\23.57
câu 2 a;chứng tỏ H=1\5^2+2\5^3+3\5^4+.....+11\5^12<1\16
b;tìm tất cả các số tự nhiên m sao cho m^2 +2014 là số chính phương
câu 3 a;cho ba chữ số a;b;c với 0<a<b<c viết tập hợp A các chữ số có 3 chữ số mỗi số gồm ba chữ số trên biết rằng tổng hai chữ số nhỏ nhất trong tập hợp A bằng 499 tìm tổng a+b+c
b;cho S=1\2.3\4.5\6.....9999\10000 so sánh S với 0;01
câu 5 a;tìm các số nguyên dương a;b;c thỏa mãn a^3-b^3-c^3=3abc và a^2 =2(b+c)
b;cho m;n thuộc N sao và P là số nguyên tố thỏa mãn P\m-1=m+n\P
chứng tỏ rằng P^2 =n+2
Dùng phương pháp chứng minh phản chứng, chứng minh định lý sau: "Với mọi số nguyên dương a,b nếu a2+b2 chia hết cho 8 thì a,b không đồng thời là các số lẻ"
Bài 1: Cho tam giác ABC có AB = 2cm, BC= 4 cm, CA = 3 cm
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
Bài 2: Cho tam giác ABC có A ( 1; -1), B ( 5,-3), C ( 2,0)
a) Chứng minh rằng : A,B,C là 3 đỉnh của tam giác
Tính chu vi và diện tích của tam giác
b) Tìm tọa độ M biết \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)
c) Tìm tâm bán kính đường tròn ngoại tiếp tam giác ABC
Cho a,b,c là ba số thực dương thỏa mãn a+b+c=3. CMR:
\(\sqrt[3]{3a+5b}+\sqrt[3]{3b+5c}+\sqrt[3]{3c+5a}\le6\)
cho a,b,c>0 thỏa abc=1
chứng minh nếu a+b+c>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) thì chỉ có 1 và chỉ 1 số trong 3 số a,b,c lớn hơn 1
Sử dụng phương pháp chứng minh
phản chứng để chứng minh các bài toán sau:
a) Chứng minh rằng có ít nhất một trong 3
phương trình :ax2 + bx + c = 0, bx2 + cx +
a = 0, cx2 + ax + b = 0 vô nghiệm.
b) Cho 0 < a, b, c < 1. Chứng minh có ít
nhất 1 trong các bất đẳng thức sau sai:
a(1 − b) >\(\frac{1}{4}\)
, b(1 − c) >\(\frac{1}{4}\)
, c(1 − a) >\(\frac{1}{4}\)
.
c) Cho các số thực x, y, z thỏa x.y.z > 0, x +
y + z > 0, xy + xz + yz > 0. Chứng minh
x, y, z là các số dương.
\(\sqrt[4]{a^3}\)+\(\sqrt[4]{b^3}\)+\(\sqrt[4]{c^3}\)>2\(\sqrt{2}\)
biết a, b, c là các số dương
Cho a,b,c>0. CM các bđt sau:
a)\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2\)
b)\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
c)\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)