chứng minh bằng phương pháp quy nạp \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
Chứng minh=phương pháp quy nạp
Chứng minh \(\sqrt{n}< 1+\frac{1}{\sqrt{2}}+.......+\frac{1}{\sqrt{n}}< 2.\sqrt{n}\) \(\left(n\in N,n>1\right)\)
chứng minh bằng pp quy nạp \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
Chứng minh bằng quy nạp: với n nguyên dương tùy ý thì: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...........+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Chứng minh bằng phương pháp quy nạp:
\(x_i>1,\forall i=1,2,.....,n\)thì \(\frac{1}{1+x_i}+\frac{1}{1+x_2}+.....................+\frac{1}{1+x_n}\ge\frac{n}{1+\sqrt[n]{x_1x_2.........x_n}}\)
Cho dãy số \(\left(u_n\right)\) được xác định bởi \(u_1=\frac{\sqrt{3}}{3}\) ; \(u_{n+1}=\frac{\sqrt{u_n^2+1}-1}{u_n}\) ; n = 1, 2, 3, ...
1/ Chứng minh \(\left(u_n\right)\) là dãy số bị chặn.
2/ Chứng minh: \(\frac{1}{u_1}+\frac{1}{u_2}+...+\frac{1}{u_{2019}}< 2^{2020}\) (chứng minh bằng quy nạp)
Cho dãy \(\left(u_n\right)\)xác định: \(\hept{\begin{cases}u_1=3\\u_{n+1}=\frac{1}{2}u_n+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3}\forall n\ge1\end{cases}}\)
a) Với a=0, bằng quy nạp hãy chứng minh \(0< u_{n+1}< u_n,\forall n\ge1\)
b) Với a=1, bằng quy nạp hãy chứng minh \(1-\frac{2}{n}< u_n,\forall n\ge2\)
Chứng minh bằng phương pháp quy nạp : 1 + 2 + 3 + ... + n = \(\frac{n.\left(n+1\right)}{2}\) ( n thuộc N*)
Kí hiệu đăng thức cần chứng minh là (*)
+) Với n = 1 thì 1 = \(\frac{1.\left(1+1\right)}{2}\) => (*) đúng
+) Giả sử (*) đúng với n = k , tức là: 1 + 2 + 3 + ....+ k = \(\frac{k\left(k+1\right)}{2}\)
Ta chứng minh (*) đúng với n = k+ 1, tức là: 1 + 2 + 3+ ...+ k + (k+1) = \(\frac{\left(k+1\right)\left(k+2\right)}{2}\)
Thật vậy, 1 + 2 + 3 + ....+ k + (k+1) = \(\frac{k\left(k+1\right)}{2}\) + (k+1) = \(\frac{k\left(k+1\right)+2\left(k+1\right)}{2}=\frac{\left(k+1\right)\left(k+2\right)}{2}\)
=> (*) đúng với n = k+ 1
Vậy.....
1 + 2 + 3 + ... + n = (n + 1) + (n - 1 + 2) + ... (n:2 cặp)
= (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) (n:2 cặp)
= (n + 1).n : 2 (đpcm)
*Xét n=2=>\(1+...+n=1+2=3=\frac{6}{2}=\frac{2.3}{2}=\frac{2.\left(2+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)
*Xét n=3=>\(1+...+n=1+2+3=6=\frac{12}{2}=\frac{3.4}{2}=\frac{3.\left(3+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)
Giả sử mệnh đề luôn đúng với n=k, ta cần chứng minh mệnh đề luôn đúng với n=k+1
Ta có: \(1+...+n=1+...+k=\frac{k.\left(k+1\right)}{2}\)
=>\(1+...+k+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\left(k+1\right)\)
=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\frac{2.\left(k+1\right)}{2}\)
=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)+2.\left(k+1\right)}{2}\)
=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(k+2\right)}{2}\)
=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(\left(k+1\right)+1\right)}{2}\)
=>Thoả mãn
=>Phép quy nạp đã được chứng minh
=>ĐPCM
Cho A=\(\frac{1}{2}\)\(\times\)\(\frac{3}{4}\)\(\times\)\(\frac{5}{6}\)\(\times\)..................\(\times\)\(\frac{2n-1}{2n}\)( n\(\in\)N, n\(\ge\)2 )
Chứng minh rằng A <\(\frac{1}{\sqrt{3n+}1}\)
(BẰNG PHƯƠNG PHÁP QUY NẠP TOÁN HỌC)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*