Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Đức Duy
Xem chi tiết
Đinh quang hiệp
29 tháng 4 2018 lúc 16:48

\(M=2\left(a+b\right)\left(a^2-ab+b^2\right)-3\left(a^2+b^2\right)\)

    \(=2\left(a^2-ab+b^2\right)-3\left(a^2+b^2\right)=2a^2-2ab+2b^2-3a^2-3b^2\)

    \(=-a^2-2ab-b^2=-\left(a^2+2ab+b^2\right)=-\left(a+b\right)^2=-1^2=-1\)

    

Không Tên
29 tháng 4 2018 lúc 16:44

\(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)

\(=2a^3+2b^3-3a^2-3b^2\)

\(=a^2\left(2a-3\right)+b^2\left(2b-3\right)\)

\(=a^2\left[2a-3\left(a+b\right)\right]+b^2\left[2b-3\left(a+b\right)\right]\)    (do a+b=1 )

\(=a^2\left(2a-3a-3b\right)+b^2\left(2b-3a-3b\right)\)

\(=a^2\left(-a-3b\right)+b^2\left(-b-3a\right)\)

\(=-a^3-3a^2b-b^3-3ab^2\)

\(=-\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(=-\left(a+b\right)^3\)   

\(=-3\)

Đinh quang hiệp
29 tháng 4 2018 lúc 17:00

bn ơi -(a+b)^3=-(1)^3=3 ak

My name is Chicky
Xem chi tiết
Nguyen My Van
19 tháng 5 2022 lúc 16:33

Ta có \(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2021}\left(1\right)\)

\(\Rightarrow\dfrac{3}{2}A=\dfrac{3}{4}+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\left(\dfrac{3}{2}\right)^4+...+\left(\dfrac{3}{2}\right)^{2013}\left(2\right)\)

Lấy (2) - (1) ta được:

\(\dfrac{3}{2}A-A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{3}{4}-\dfrac{1}{2}-\dfrac{3}{2}\)

\(\dfrac{1}{2}A=\left(\dfrac{3}{2}\right)^{2013}+\dfrac{1}{4}\Rightarrow A=\dfrac{3^{2013}}{2^{2012}}+\dfrac{1}{2}\)

Vậy \(B-A=\dfrac{3^{2013}}{2^{2014}}-\dfrac{3^{2013}}{2^{2012}}+\dfrac{5}{2}\)

Scarlett Ohara
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 7 2021 lúc 17:12

\(A=2\left(a+b\right)^3-6ab\left(a+b\right)-3\left(a+b\right)^2+6ab\)

\(=2-6ab-3+6ab=-1\)

Dưa Hấu
11 tháng 7 2021 lúc 17:14

undefined

Thơ Nụ =))
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2024 lúc 21:01

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

=1

I ♥ Jungkook
Xem chi tiết
Aki Tsuki
24 tháng 8 2018 lúc 11:52

nhiều thế, đăng ít một thôi bạn

Aki Tsuki
24 tháng 8 2018 lúc 12:01

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

Mysterious Person
24 tháng 8 2018 lúc 12:21

e) ta dể dàng thấy được : \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(\Rightarrow E=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=\left(2a+2b\right)^2-2\left(a+b+c\right)\left(a+b-c\right)-2\left(a+b\right)^2\)

\(=4\left(a+b\right)^2-2\left(\left(a+b\right)^2-c^2\right)-2\left(a+b\right)^2\)

\(=4\left(a+b\right)^2-2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2=2c^2\)

g) củng sử dụng cái trên ta có : \(G=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)

\(=\left(2a+2b\right)^2-2\left(a+b+c+d\right)\left(a+b-c-d\right)+\left(2a-2b\right)^2-2\left(a+c-b-d\right)\left(a+d-b-c\right)\)

\(=4\left(a+b\right)^2+4\left(a-b\right)^2-2\left(\left(a+b\right)^2-\left(c+d\right)^2\right)-2\left(\left(a-b\right)^2-\left(c-d\right)^2\right)\)

\(=4\left(\left(a+b\right)^2+\left(a-b\right)^2\right)-2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)

\(=2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)

\(=2\left(\left(2a\right)^2-2\left(a+b\right)\left(a-b\right)\right)+2\left(\left(2c\right)^2-2\left(c+d\right)\left(c-d\right)\right)\)

\(=2\left(4a^2-2\left(a^2-b^2\right)\right)+2\left(4c^2-2\left(c^2-d^2\right)\right)\)

\(=2\left(2a^2+2b^2\right)+2\left(2c^2+2d^2\right)=4\left(a^2+b^2+c^2+d^2\right)\)

bn đăng nhiều quá nên mk làm câu nào hay câu đó nha

mà nè mấy câu a;b;c;d hình như trên mạng có bn lên đó tìm nha .

Cô Gái Mùa Đông
Xem chi tiết
Cáo Nô
Xem chi tiết
trương trần nhật huy
Xem chi tiết
Vanh Leg
22 tháng 12 2018 lúc 19:43

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

yushi hatada
Xem chi tiết
Nguyễn Mai Hương
9 tháng 12 2019 lúc 20:52

Có: M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

=> M = (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

=> M = (a + b)[(a + b)2 - 3ab] + 3ab[(a + b)2 - 2ab] + 6a2b2(a + b)

=> M = 1 - 3ab + 3ab(1 - 2ab) + 6a2b2     (vì a+b=1)

=> M = 1 - 3ab + 3ab - 6a2b2 + 6a2b2 

=> M = 1

Vậy M = 1

Khách vãng lai đã xóa
Lê Trần Khánh Linh
9 tháng 12 2019 lúc 20:59

M = \(a^3\)\(b^3\)+ 3ab ( \(a^2\)\(b^2\)) + \(6a^2\)\(b^2\)(a+b)

M = ( a + b ) ( \(a^2\)- ab + \(b^2\))  + 3ab [ \(a^2\)\(b^2\)+ 2ab( a + b )

M = \(a^2\)- ab + \(b^2\)+ 3ab ( \(a^2\)+ 2ab + \(b^2\))

Với a + b = 1

M= \(a^2\)- ab + \(b^2\)+ 3ab\(\left(a+b\right)^2\)

M = \(a^2\)- ab + \(b^2\)+ 3ab

M = \(a^2\)\(b^2\)+ 2ab

M = \(a^2\)+ 2ab + \(b^2\)

M = \(\left(a+b\right)^2\)

M = 1

Vậy M = 1

Khách vãng lai đã xóa