Tìm Min của:
A = \(x^2+2y^2+2xy+2x-4y+2020\)
Tìm min của A = x mũ 2 + 2y mũ 2 + 2xy +2x - 4y + 2020
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}y=3\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=-4\end{cases}}}\)
Vậy \(Min_A=2010\Leftrightarrow\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
Chúc bạn học tốt !!!
Tham khảo :
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu ''=''= xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
cho mình hỏi cái :
10 mũ x+4y=2013
mình đang cần gấp 3 tiếng nưa là mình phải đi học rồi
Tìm Min:
\(A=x^2+2y^2-2xy-4y+5\)
\(B=5x^2+8xy+5y^2-2x+2y\)
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm min : a) \(M=x^2-2xy+2y^2-4y+2016\)
b) \(N=x^2-2xy+2x+2y^2-4y+2016\)
a)\(M=x^2-2xy+2y^2-4y+2016\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)
Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)
Vậy MinM=2012 khi x=y=2
b)\(N=x^2-2xy+2x+2y^2-4y+2016\)
\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)
Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)
Vậy MinN=2014 khi x=0;y=1
tìm max y-2y^2+x^2-5x và
7xy-3x^2-4y^2+2x-3y+5
tìm min
3y^2-2xy+6x^2 -x +2y-1
Tìm Min A=2x2+y2+6x+2y+2xy+2017
Tìm Max B= 2000/x2-2xy+2y2+2x-4y+2017
Tìm GTNN
A= x2+ 2y2- 2xy+ 4x - 6y +2025
B= 2x2 +y2 -2xy-4x +2y +2021
C= 2x2+ 4y2+4xy- 8x - 12y +2020
D= x2 +y2-2x +4y+10
D ez nhất :v
\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)
Đẳng thức xảy ra khi x = 1 và y = -2
\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)
\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1
\(B=\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+x^2-2x+1+2019\)
\(=\left(x-y\right)^2-2\left(x-y\right).1+1+\left(x-1\right)^2+2019\)
\(=\left(x-y-1\right)^2+\left(x-1\right)^2+2019\ge2019\)
Dấu "=" xảy ra khi x = 1 và x - y - 1 = 0 hay y = 0
Bài 1: tìm max: -5x2 -4x-19/5
bài 2: Tìm Min
A= -x2 +2xy-4y2 +2x+10y+5
B= -x2-2y2 - 2xy +2x -2y -15
Giúp mình với mình cần gấp lắm
Bài 1 :
=-5(x^2+4/5x+19/25)
=-5(x^2+2x.2/5+4/25+3/5)
=-5(x+2/5)^2-3
Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3
Vậy Min là-3
Tìm Min
A=3x2+5x-2
B=x2+2y2-2xy-4y+5
C=2x2+4y2-4xy-4x-4y+2017
Ai đó giúp mình cái
\(A=3x^2+5x-2\)
\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)
\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)
Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)
Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)
mk làm ý a thôi, mấy ý sau dựa vào mà làm.
A = \(3x^2+5x-2\)
=> \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)
\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra <=> x = - 5/6.
Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.