Định nghĩa kí hiệu phép toán như sau:a#b(2xb-a)x(a+b),tính 3#(5#3)
dựa vào định nghĩa kí hiệu phép toán sau:a b = ( a + b ) ( a −b)
Hãy Tính giá trị biểu thức sau (6 5 )9
.
Xác định kí hiệu phép toán a b a b 2 a, tìm giá trị của (3 2) 4.( là kí hiệu toán cần xác định )
Trong Excel, Các kí hiệu dùng để kí hiệu các phép toán
A. + - . :
B. + - * /
C. ^ / : x
D. + - ^ \
Các phép toán +, - , x, :, trong toán học được kí hiệu trong Excel là +, -, *, /.
Đáp án: B
Các kí hiệu đúng dùng để kí hiệu các phép toán trong Excel?
Các kí hiệu đúng dùng để kí hiệu các phép toán trong Excel?
A. ^ / : x -
B. + - . : ^
C. + - * / ^
D. + - ^ \ *
Câu hỏi vui lần 2:
Từ 3 chữ số 3 và các phép toán, các kí hiệu toán học (không bao gồm các phép toán và kí hiệu toán học chứa chữ cái, ví dụ sin, cos, log...), hãy lập ra một biểu thức có kết quả bằng 17
Ủa phép tổ hợp có được tính không nhỉ?
\(C^3_{3!}-3=17\).
Cách làm của bạn Sigma là chính xác (thật ra nó trùng với suy nghĩ của mình khi ra đề).
Nhưng bài này còn có những cách tính khác vẫn thỏa mãn, nghĩ tiếp nào các bạn (theo mình biết thì ít nhất còn 2 cách khác nữa).
Khó ghê, không biết đúng không.
\(\left[\sqrt{3^{3\sqrt{3}}}\right]=17\)
Lập bảng các kí hiệu trong toán học
Ghi nghĩa của kí hiệu
https://dominhhai.github.io/vi/2017/10/math-notation/
Bạn tham khảo link này nhé
#chanh
Kí hiệu | Ý nghĩa |
---|---|
\mathbb{A}A | Tập \mathbb{A}A bất kì |
\mathbb{N}N | Tập số tự nhiên |
\mathbb{Z}Z | Tập số nguyên |
\mathbb{Q}Q | Tập số hữu tỉ |
\mathbb{I}I | Tập số vô tỉ |
\mathbb{R}R | Tập số thực |
\{x,y,z\}{x,y,z} | Tập chứa các phần tử x,y,zx,y,z |
\{a_1,a_2,…,a_n\}{a1,a2,…,an} | Tập chứa các số nguyên từ a_1a1 tới a_nan |
[a,b][a,b] | Tập chứa các số thực trong khoảng a<ba<b, bao gồm cả aa và bb |
(a,b)(a,b) | Tập chứa các số thực trong khoảng a<ba<b, không bao gồm cả aa và bb |
[a,b)[a,b) | Tập chứa các số thực trong khoảng a<ba<b, gồm aa nhưng không gồm bb |
(a,b](a,b] | Tập chứa các số thực trong khoảng a<ba<b, gồm bb nhưng không gồm aa |
x^{(i)}x(i) | Đầu vào thứ ii trong tập huấn luyện |
y^{(i)}y(i) | Đầu ra thứ ii trong tập huấn luyện ứng với đầu vào x^{(i)}x(i) |
Số và ma trận
Kí hiệu | Ý nghĩa |
---|---|
aa | Số thực aa |
\mathbf{a}a | Véc-to cột \mathbf{a}a |
\mathbf{A}A | Ma trận \mathbf{A}A |
[a_i]_n[ai]n hoặc (a_1,….,a_m)(a1,….,am) | Véc-to hàng \mathbf{a}a cấp nn |
[a_i]_n^{\intercal}[ai]n⊺ hoặc (a_1,….,a_m)^{\intercal}(a1,….,am)⊺ | Véc-to cột \mathbf{a}a cấp nn |
\mathbf{a}\in\mathbb{R^n}a∈Rn | Véc-to cột số thực \mathbf{a}a cấp nn |
[A_{ij}]_{mn}[Aij]mn | Ma trận \mathbf{A}A cấp m \times nm×n |
\mathbf{A}\in\mathbb{R^{m \times n}}A∈Rm×n | Ma trận số thực \mathbf{A}A cấp m \times nm×n |
\mathbf{I}_nIn | Ma trận đơn vị cấp nn |
\mathbf{A}^{\dagger}A† | Giả nghịch đảo của ma trận AA (Moore-Penrose pseudoinverse) |
\mathbf{A}\odot\mathbf{B}A⊙B | Phép nhân phần tử Hadamard của ma trận \mathbf{A}A với ma trận \mathbf{B}B (element-wise (Hadamard)) |
\mathbf{a}\otimes\mathbf{b}a⊗b | Phép nhân ngoài của véc-to \mathbf{a}a với véc-to \mathbf{b}b (outer product): \mathbf{a}\mathbf{b}^{\intercal}ab⊺ |
\Vert\mathbf{a}\Vert_p∥a∥p | Norm cấp pp của véc-to \mathbf{a}a: \Vert\mathbf{a}\Vert=\bigg(\sum_i\vert x_i\vert^p\bigg)^\frac{1}{p}∥a∥=(∑i∣xi∣p)p1 |
\Vert\mathbf{a}\Vert∥a∥ | Norm cấp 2 của véc-to \mathbf{a}a (độ dài véc-to) |
a_iai | Phần tử thứ ii của véc-to \mathbf{a}a |
A_{i,j}Ai,j | Phần tử hàng ii, cột jj của ma trận \mathbf{A}A |
A_{i_1:i_2,j_1:j_2}Ai1:i2,j1:j2 | Ma trận con từ hàng i_1i1 tới i_2i2 và cột j_1j1 tới j_2j2 của ma trận \mathbf{A}A |
A_{i,:}Ai,: hoặc \mathbf{A}^{(i)}A(i) | Hàng ii của ma trận \mathbf{A}A |
A_{:,j}A:,j | Cột jj của ma trận \mathbf{A}A |
Giải tích
Kí hiệu | Ý nghĩa |
---|---|
f:\mathbb{A}\mapsto\mathbb{B}f:A↦B | Hàm số ff với tập xác định AA và tập giá trị BB |
f(x)f(x) | Hàm số 1 biến ff theo biến xx |
f(x,y)f(x,y) | Hàm số 2 biến ff theo biến xx và yy |
f(\mathbf{x})f(x) | Hàm số ff theo véc-to \mathbf{x}x |
f(\mathbf{x};\theta)f(x;θ) | Hàm số ff theo véc-to \mathbf{x}x có tham số véc-to \thetaθ |
f(x)^{\prime}f(x)′ hoặc \dfrac{df}{dx}dxdf | Đạo hàm của hàm ff theo xx |
\dfrac{\partial{f}}{\partial{x}}∂x∂f | Đạo hàm riêng của hàm ff theo xx |
\nabla_\mathbf{x}f∇xf | Gradient của hàm ff theo véc-to \mathbf{x}x |
\int_a^bf(x)dx∫abf(x)dx | Tích phân tính theo xx trong khoảng [a,b][a,b] |
\int_\mathbb{A}f(x)dx∫Af(x)dx | Tích phân toàn miền \mathbb{A}A của xx |
\int f(x)dx∫f(x)dx | Tích phân toàn miền giá trị của xx |
\log{x}logx hoặc \ln{x}lnx | Logarit tự nhiên: \log{x}\triangleq\ln{x}\triangleq\log_e{x}logx≜lnx≜logex |
\sigma(x)σ(x) | Hàm sigmoid (logis sigmoid): \dfrac{1}{1+e^{-x}}=\dfrac{1}{2}\Bigg(\tanh\bigg({\dfrac{x}{2}}\bigg)+1\Bigg)1+e−x1=21(tanh(2x)+1) |
Xác suất thống kê
Kí hiệu | Ý nghĩa |
---|---|
\hat{y}y^ | Đầu ra dự đoán |
\hat{p}p^ | Xác suất dự đoán |
\hat{\theta}θ^ | Tham số ước lượng |
J(\theta)J(θ) | Hàm chi phí (cost function) hay hàm lỗi (lost function) ứng với tham số \thetaθ |
I.I.D | Mẫu ngẫu nhiên (Independent and Idenal Distribution) |
LL(\theta)LL(θ) | Log lihood của tham số \thetaθ |
MLE | Ước lượng hợp lý cực đại (Maximum lihood Estimation) |
MAP | Cực đại xác suất hậu nghiệm (Maximum A Posteriori) |
Danh sách ký hiệu toán học – Wikipedia tiếng Việt
Tập các kí hiệu toán học
Các ký hiệu toán học thông dụng rất hay - TaiLieu.VN
Câu 1: Hãy tính toán xác định số hiệu nguyên tử, số khối và kí hiệu nguyên tử của các nguyên tố trong các trường hợp sau:
a) Nguyên tử của nguyên tố Y có số hạt mang điện tích dương là 11. Số hạt không mang điện tích nhiều hơn số hạt mang điện tích âm là 1 hạt
b) Nguyên tử của nguyên tố R có tổng số hạt p, n, e là 24. Trong hạt nhân, số hạt không mang điện bằng số hạt mang điện.
a, Ta có: \(\left\{{}\begin{matrix}p=11\\p=e\\n-e=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=12\\p=e=11\end{matrix}\right.\)
Ta có: A = p + n = 11 + 12 = 23
=> Y là natri (Na)
b,Ta có: \(\left\{{}\begin{matrix}p+e+n=24\\p=e\\n=p\end{matrix}\right.\Leftrightarrow p=n=e=8\)
Ta có: A = p + n = 8+8 = 16
=> R là oxi (O)
a) Ta thấy \(p=11\) \(\Rightarrow e=11=Z\)
\(\Rightarrow n=12\) \(\Rightarrow A=p+n=23\) (Na)
b) Ta lập HPT: \(\left\{{}\begin{matrix}2Z+N=24\\Z-N=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}Z=8\\N=8\end{matrix}\right.\)
\(\Rightarrow A=16\) (O)
Câu hỏi vui:
Từ 4 chữ số 4 và các phép toán, các kí hiệu toán học (không bao gồm các phép toán và kí hiệu toán học chứa chữ cái, ví dụ sin, cos, log, ...), hãy lập ra một biểu thức có kết quả bằng 19.
P/s: Cách đây 1 năm, thầy Nguyễn Việt Lâm - giáo viên Toán học của trang web học trực tuyến HOC24.VN đã đăng 1 câu hỏi vui tương tự, nhưng là từ 3 chữ số 3 và thu được kết quả là 17. Câu hỏi này tường chừng đơn giản nhưng cuối cùng, chỉ có 3 người đưa ra được đáp án chính xác.
\(4!-4-\dfrac{4}{4}\)\(=24-4-1=19\)
\(\left[\sqrt{4!\sqrt{4!\sqrt{4!\sqrt{4!}}}}\right]=19\)
\(\left[\sqrt{4}^4+\sqrt{4}+\sqrt{\sqrt{\sqrt{\sqrt{4}}}}\right]=19\)
Số hạng thứ 3 càng nhiều căn kq càng đúng