Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
18 tháng 9 2020 lúc 12:39

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

Khách vãng lai đã xóa
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
[       ]
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
7 tháng 3 2021 lúc 15:50

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!

Trần Đình Đắc
Xem chi tiết
Kayoko
Xem chi tiết
Akai Haruma
26 tháng 6 2021 lúc 18:46

1. ĐKXĐ: $x\geq \frac{-3}{5}$

PT $\Leftrightarrow 5x+3=3-\sqrt{2}$

$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$

Akai Haruma
26 tháng 6 2021 lúc 18:47

2. ĐKXĐ: $x\geq \sqrt{7}$ 

PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$

$\Leftrightarrow x-49=4$

$\Leftrightarrow x=53$ (thỏa mãn)

 

Smile
26 tháng 6 2021 lúc 18:49

undefined

Tùng Nguyễn
Xem chi tiết
Nhược Vũ
Xem chi tiết
Nguyễn Phương Anh
2 tháng 2 2021 lúc 10:15

Xem lại đề bạn nhé

Trần Hoàng Anh
Xem chi tiết
Lê Song Phương
8 tháng 10 2023 lúc 9:47

a) đkxđ \(x\ge1\)

pt đã cho \(\Leftrightarrow\left(\sqrt{2x-1}-3\right)+\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}+3}+\dfrac{x-5}{\sqrt{x-1}+2}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+3}=0\end{matrix}\right.\)

 Hiển nhiên pt thứ 2 vô nghiệm vì \(VT>0\) với mọi \(x\ge1\). Do đó pt đã cho có nghiệm duy nhất là \(x=5\)

b) đkxđ: \(x\ge-3\)

 Để ý rằng \(x^2+2x+7=\left(x^2+1\right)+\left(2x+6\right)=\left(x^2+1\right)+2\left(x+3\right)\) nên nếu ta đặt \(\sqrt{x^2+1}=u\left(u\ge1\right)\) và \(\sqrt{x+3}=v\left(v\ge0\right)\) thì pt đã chot rở thành:

 \(u^2+2v^2=3uv\)

 \(\Leftrightarrow\left(u-v\right)\left(u-2v\right)=0\)

 \(\Leftrightarrow\left[{}\begin{matrix}u=v\\u=2v\end{matrix}\right.\)

Nếu \(u=v\) thì \(\sqrt{x^2+1}=\sqrt{x+3}\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=x+3\end{matrix}\right.\) 

Mà \(x^2+1=x+3\)  \(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (nhận)

 Nếu \(u=2v\) thì \(\sqrt{x^2+1}=2\sqrt{x+3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=4x+12\end{matrix}\right.\)

mà \(x^2+1=4x+12\)\(\Leftrightarrow x^2-4x-11=0\)

\(\Leftrightarrow x=2\pm\sqrt{15}\) (nhận)

Vậy pt đã cho có tập nghiệm \(S=\left\{2;-1;2\pm\sqrt{15}\right\}\)

 

HT.Phong (9A5)
8 tháng 10 2023 lúc 7:55

a) \(\sqrt{2x-1}+\sqrt{x-1}=5\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{x-1}\right)^2=5^2\)

\(\Leftrightarrow2x-1+x-1+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)

\(\Leftrightarrow3x-2+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-1\right)}=\dfrac{27-3x}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{27-3x}{2}\ge0\\\left(2x-1\right)\left(x-1\right)=\left(\dfrac{27-3x}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}27-3x\ge0\\2x^2-2x-x+1=\dfrac{729-162x+9x^2}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x\le27\\8x^2-12x+4=9x^2-162x+729\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x^2-150x+725=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x-5=0\\x-145=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=145\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=5\)