cho đường thẳng d1 y=x+4 và y=-2x+1 d2
xác định hệ số góc d1 và d2
Cho hai đường thẳng d1: y=1/2x+4 và d2:-x+4
a) Xác định các góc giữa d1,d2 với tia Ox ( làm tròn đến độ )
b) Xác định góc tạo bởi hai đường thẳng d1 và d2
c) Gọi giao điểm của d1,d2 vói trục hoành theo thứ tự là A,B và giao điểm của hai đường thẳng là C. Tính các góc của tam giác ABC
d) Tính chu vi và diện tích tam giác ABC ( đơn vị đo trên các trục toạ độ là centimet)
a) \(\left\{{}\begin{matrix}y=\dfrac{1}{2}x+4\left(d_1\right)\\y=-x+4\left(d_2\right)\end{matrix}\right.\)
Gọi \(\alpha=\left(d_1;ox\right)\) là góc tạo bởi đường thẳng d1 và ox
\(\Rightarrow tan\alpha=\dfrac{1}{2}\Rightarrow\alpha=27^o\)
Gọi \(\beta=\left(d_2;ox\right)\) là góc tạo bởi đường thẳng d2 và ox
\(\Rightarrow tan\beta=-1\Rightarrow\beta=-45^o\)
b) Hệ số góc của đường thẳng \(d_1\) là \(k_1=tan\alpha=\dfrac{1}{2}\)
Hệ số góc của đường thẳng \(d_2\) là \(k_2=tan\beta=-1\)
Góc tạo bởi 2 đường thẳng \(d_1;d_2\) là \(\varphi\)
\(tan\varphi=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{\dfrac{1}{2}-\left(-1\right)}{1+\dfrac{1}{2}.\left(-1\right)}\right|=3\) \(\)
\(\Rightarrow\varphi=72^o\)
Bài II (3,0 điểm) Cho 2 đường thẳng: (d1): y= +2x 4 và (d2): y=− +x 1 .
1) Tìm tọa độ giao điểm A của đường thẳng (d1) và đường thẳng (d2).
2) Xác định hệ số a, b của đường thẳng y ax b= + (a0) biết đường thẳng đó song song với đường thẳng (d1) và đi qua điểm M (-1; 3).
3) Gọi B và C lần lượt là giao điểm của đường thẳng (d1) và (d2) với trục hoành. Tính diện tích tam giác ABC.
1, PT hoành độ giao điểm: \(2x+4=-x+1\Leftrightarrow x=-1\Leftrightarrow y=0\)
\(\Leftrightarrow A\left(-1;0\right)\)
Vậy \(A\left(-1;0\right)\) là tọa độ giao điểm 2 đths
2, Đt cần tìm //(d1)\(\Leftrightarrow a=2;b\ne4\)
Đt cần tìm đi qua M(-1;3) nên \(-a+b=3\Leftrightarrow-2+b=3\Leftrightarrow b=5\left(tm\right)\)
Vậy đths là \(y=2x+5\)
3, PT giao điểm d1 với trục hoành là \(y=0\Leftrightarrow2x+4=0\Leftrightarrow x=-2\Leftrightarrow B\left(-2;0\right)\)
PT giao điểm d2 với trục hoành là \(y=0\Leftrightarrow-x+1=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\)
Do đó \(BC=\left|-2\right|+\left|1\right|=3;OA=\left|-1\right|=1\)
Vậy \(S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{3}{2}\left(đvdt\right)\)
Cho hàm số \(y=2x+1\) có đồ thị là đường thẳng (d1) và hàm số \(y=-x+4\) có đồ thị là đường thẳng (d2)
Xác định các hệ số a, b biết đường thẳng (d3): \(y=ax+b\) song song với đường thẳng (d1) và cắt đường thẳng (d2) tại điểm có tung độ bằng \(-2\)
d3//d1 => a=2 (b khác 1)
d3 cắt d2 tại điểm có tung độ bằng 2 Thay y=2 vào d2
=> 2=-x+4=> x=2 Thay y=2; x=2; a=2 vào d3
=> 2+2.2+b=> b=-6
Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d 1 : x = - t y = - 1 + 4 t z = 3 t và d 2 : x 1 = y + 8 - 4 = z + 3 - 3 . Xác định góc α giữa hai đường thẳng d 1 và d 2
A. α = 0 °
B. α = 30 °
C. α = 90 °
D. α = 180 °
Đường thẳng d 1 có một VTCP
d 2 có một VTCP
Chọn A.
Cho hàm số \(y=2x+4\) có đồ thị là (d1) và hàm số \(y=-x+1\) có đồ thị là (d2)
a. Vẽ (d1) và (d2) trên cùng một mặt phẳng toạ độ Oxy
b. Xác định các hệ số a, b của đường thẳng \(y=ax+b\) (d3). Biết (d3) song song với (d1) và (d3) cắt (d2) tại một điểm có hoành độ bằng 2
1/Cho hai đường thẳng (d1):y = x + 4 và (d2):y = - 2x - 2 a) Vẽ đồ thị (d1) và (d2) trên cùng một mặt phẳng tọa độ. b) Cho đường thẳng (d3): y = ax + b . Xác định a và b biết đường thẳng (d3) song song với đường thẳng (d1) và (d3) cắt (d2)tại điểm A có hoành độ là -3.
\(b,\left(d_3\right)\text{//}\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b\ne4\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=x+b\)
PT hoành độ giao điểm \(\left(d_2\right);\left(d_3\right)\) là \(x+b=-2x-2\)
Mà 2 đt cắt tại hoành độ \(-3\) nên \(x=-3\)
\(\Leftrightarrow b-3=4\Leftrightarrow b=7\)
Vậy \(\left(d_3\right):y=x+7\)
Bài 2: Cho hàm số y = 2x có đồ thị (d1); hàm số y=x-1 có đồ thị (d2) . a / Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ. b/ Xác định tọa độ giao điểm A của (d1) và (d2) bằng phép toán. c/ Viết ph / trình đường thẳng (D) song song với (d2) và điểm M(6;3) qua
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x=x-1\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Cho d1:y=2x+1; d2:y=x+1; d3:y=(m+1)x+2m-1
a)Xác định tọa độ giao điểm A của d1 và d2 bằng phép tính
b)Lập phương trình đường thẳng d4 đi qua điểm A có hệ số góc là -4
c)Lập phương trình đường thẳng d5 đi qua điểm A song song đường thẳng d6:y=0,5x+9
d)Tìm m để 3 đường thẳng d1;d2;d3 đồng quy
a: Phương trình hoành độ giao điểm là:
2x+1=x+1
=>2x-x=1-1
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
=>A(0;1)
b: Vì (d4) có hệ số góc là -4 nên (d4): y=-4x+b
Thay x=0 và y=1 vào (d4), ta được:
b-4*0=1
=>b=1
=>y=-4x+1
c: Vì (d5)//(d6) nên (d5): y=0,5x+a
Thay x=0 và y=1 vào (d5), ta được:
a+0,5*0=1
=>a=1
=>y=0,5x+1
d: Thay x=0 và y=1 vào (d3), ta được:
0*(m+1)+2m-1=1
=>2m-1=1
=>2m=2
=>m=1
Cho đường thẳng : (d1) : y = (1 - 3m)x - 2
(d2) : y = 2x + m - 3
Khi m = 1
Vẽ (d1) ; (d2) trên cùng một hệ trục tọa độ , tìm giao điểm A . Xác định B và C là giao điểm của (d1) ; (d2) với trục hoành
+ Tính diện tích và chu vi tam giác ABC
+ Tính góc tọa bởi đường thẳng (d2) và trục hoành
\(m=1\Leftrightarrow\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=2x-2\end{matrix}\right.\\ \text{PTHDGD: }-2x-2=2x-2\Leftrightarrow x=0\Leftrightarrow y=-2\Leftrightarrow A\left(0;-2\right)\\ \text{PT giao Ox: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=-1\Leftrightarrow B\left(-1;0\right)\Leftrightarrow OB=1\\y=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\Leftrightarrow OC=1\end{matrix}\right.\\ \Leftrightarrow BC=1+1=2\\ AB=AC=\sqrt{2^2+1^2}=\sqrt{3}\\ OA=\left|-2\right|=2\\ \Leftrightarrow P_{ABC}=AB+BC+CA=2+2\sqrt{3}\left(đvd\right)\\ S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{1}{2}\cdot2\cdot2=2\left(đvdt\right)\)
Gọi góc đó là \(\alpha\)
Vì \(2>0\Leftrightarrow\alpha< 90^0\)
\(\tan\alpha=2\Leftrightarrow\alpha\approx63^0\)