cho \(\left(O;R\right)\) đường kính AB. Dây cung CD \(\perp\) OA tại M là trung điểm của OA
1, Xác đinh dạng của tứ giác OCAD
2, Xác định dạng của tam giác BCD
3, Tính diện tích tứ giác ACBD theo R
HEPL ME!!!!!! MK ĐANG CẦN GẤP
Ai làm đc hok??
Cho điểm A cố định nằm ngoài đường tròn \(\left(O\right)\). Kẻ các tiếp tuyến AE,AF với \(\left(O\right)\) (E F là các tiếp điểm). Điểm D di động trên cung lớn EF sao cho tam giác DEF nhọn. Tiếp tuyến tại D của \(\left(O\right)\) cắt các tia AE AF lần lượt tại B,C. Gọi M, N lần lượt là giao điểm của đường thẳng EF với các đường thẳng OB,OC.
a) Chứng minh bốn điểm B,M,N,C cùng thuộc một đường tròn.
b) Gọi DK,OI lần lượt là đường phân giác của \(\widehat{EDF};\widehat{BOC}\left(K\in EF;I\in BC\right)\). Chứng minh đường thẳng IK luôn đi qua một điểm cố định
a) có CNF + NFD=90
MBC+EFD=90
=> MBC+EFD=90
=>MBC=MNC
=> TG BNMC nội tiếp (đpcm)
cho \(0^o< \alpha< \beta< 90^o\). chứng minh :\(\cos\left(\alpha-\beta\right)=\cos\left(\alpha\right)\cos\left(\beta\right)+\sin\left(\alpha\right)\sin\left(\beta\right)\)
Cho đường tròn (O) và dây AB không là đường kính, C là một điểm trên AB, D là 1 điểm trên cung nhỏ AB của (O), OD cắt AB tại E. đường thẳng OC cắt \(\left(O^,\right)\)ngoại tiếp tam giác OAB tại F, EF cắt \(\left(O^,\right)\)tại G, GD cắt\(\left(O^,\right)\)tại H. Chứng minh:
1) tam giác OCD đồng dạng tam giác ODF từ đó suy ra góc CFD= góc CDO
2)Gọi S là trung điểm của CD. Chứng minh 3 điểm O,H,S thẳng hàng
Cho đường tròn \(\left(O\right)\) và điểm \(A\) bên ngoài đường tròn, từ \(A\) vẽ tiếp tuyến \(AB\) với đường tròn (\(B\) là tiếp điểm). Kẻ đường kính \(BC\) của đường tròn \(\left(O\right)\). \(AC\) cắt đường tròn \(\left(O\right)\) tại \(D\) (\(D\) khác \(C\)).
\(a\)) Chứng minh \(BD\) vuông góc \(AC\) và \(AB^2=AD\cdot AC\).
\(b\)) Từ \(C\) vẽ dây \(CE//OA,BE\) cắt \(OA\) tại \(H\). Chứng minh \(H\) là trung điểm \(BE\) và \(AE\) là tiếp tuyến của đường tròn \(\left(O\right)\).
\(c\)) Tia \(OA\) cắt đường tròn \(\left(O\right)\) tại \(F\). Chứng minh \(FA\cdot CH=HF\cdot CA\).
Cho đường tròn \(\left(O\right)\) và hai điểm \(A,B\). Một điểm \(M\) thay đổi trên đường tròn \(\left(O\right)\) . Tìm quỹ tích điểm \(M'\) sao cho \(\overrightarrow{MM'}+\overrightarrow{MA}=\overrightarrow{MB}\)
Cho nửa \(\left(O\right)\), đường kính \(AB=2R\) và dây \(AC=R\). Gọi \(K\) là trung điểm của \(BC\). Qua \(B\) vẽ tiếp tuyến \(Bx\) với \(\left(O\right)\), tiếp tuyến này cắt tia \(OK\) tại \(D\).
\(a\)) Chứng minh \(DC\) là tiếp tuyến của \(\left(O\right)\).
\(b\)) Tia \(OD\) cắt \(\left(O\right)\) ở \(M\). Chứng minh \(OBMC\) là hình thoi.
\(c\)) Vẽ \(CH\) vuông góc với \(AB\) tại \(H\) và gọi \(I\) là trung điểm của \(CH\). Tiếp tuyến tại \(A\) của \(\left(O\right)\) cắt tia \(BI\) tại \(E\). Chứng minh \(E,C,D\) thẳng hàng.
Trong mặt phẳng Oxy, cho đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-2\right)^2=9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay \(Q_{\left(O,-90^0\right)}\) với O là gốc tọa độ ?
cho \(\Delta ABC\). Tổng \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\left(\overrightarrow{BC},\overrightarrow{CA}\right)+\left(\overrightarrow{CA},\overrightarrow{AB}\right)\) có thể chấp nhận giá trị nào trong các giá trị sau : \(90^o;180^o;270^o;360^o\) ?
Ta có : \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\left(\overrightarrow{BA},\overrightarrow{BC}\right)=180^o;\left(\overrightarrow{BC},\overrightarrow{CA}\right)+\left(\overrightarrow{CB},\overrightarrow{CA}\right)=180^o\)
\(\left(\overrightarrow{CA},\overrightarrow{AB}\right)+\left(\overrightarrow{AC},\overrightarrow{AB}\right)=180^o\)
Mà \(\left(\overrightarrow{BA},\overrightarrow{CB}\right)+\left(\overrightarrow{CB},\overrightarrow{CA}\right)+\left(\overrightarrow{AC},\overrightarrow{AB}\right)=\widehat{A}+\widehat{B}+\widehat{C}\)\(=180^o\)
Do vậy tổng: \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\left(\overrightarrow{BC},\overrightarrow{CA}\right)+\left(\overrightarrow{CA},\overrightarrow{AB}\right)=360^o\)
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn \(\left(C\in\left(O\right),D\in\left(O'\right)\right)\)
a) Tính số đo góc CAD
b) Tính độ dài CD biết OA = 4,5, O'A = 2cm
Câu đố mới đây: Cho (O) và (O') tiếp xúc ngoài tại A. Vẽ tiếp tuyến chung ngoài BC (với \(B\in\left(O\right);C\in\left(O'\right)\)). Hãy so sánh BC và OO'