Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai Anh Vũ
Xem chi tiết
Kirito ( vũ bình )
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 21:59

1) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

2) Ta có: ΔABD=ΔAED(cmt)

nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)

Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)(cmt)

nên \(\widehat{KBD}=\widehat{CED}\)

Xét ΔDBK và ΔDEC có 

\(\widehat{KBD}=\widehat{CED}\)(cmt)

BD=ED(cmt)

\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDBK=ΔDEC(g-c-g)

3) Ta có: ΔDBK=ΔDEC(cmt)

nên BK=EC(hai cạnh tương ứng)

Ta có: AB+BK=AK(B nằm giữa A và K)

AE+EC=AC(E nằm giữa A và C)

mà AB=AE(gt)

và BK=EC(cmt)

nên AK=AC

Xét ΔAKC có AK=AC(cmt)

nên ΔAKC cân tại A(Định nghĩa tam giác cân)

Nguyễn Văn Thức
Xem chi tiết
Phương Cát Tường
Xem chi tiết
meme
19 tháng 8 2023 lúc 16:22

Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.

Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.

Áp dụng định lý phân giác, ta có:

AB/BD = AC/CD

Từ đó, ta có:

AB/AD + AC/AD = AB/BD + AC/CD

= (AB + AC)/(BD + CD)

= (AB + AC)/BC

= 1/BC (vì tam giác ABC vuông tại A)

Vậy, ta có:

1/AD = 1/AB + 1/AC

√2/AD = √2/AB + √2/AC

Vậy, chứng minh đã được hoàn thành.

Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:49

2/AD^2=(căn 2/AD)^2

=(1/AB+1/AC)^2

\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)

\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)

\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)

xD
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2021 lúc 21:52

https://olm.vn/hoi-dap/detail/273894454691.html

Linh Linh
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 6 2021 lúc 12:40

Kẻ \(AH\perp BC\) tại H

Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\)

Áp dụng hệ thức lượng vào tam giác vuông AED có:

\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))

\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)

Vậy...

Ngân
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
nhi nguyenuyen
Xem chi tiết