cho A=xyxy là số nguyên dương và A là số chính phương. tìm tất cả các giá trị có thể có của A
Giả sử a và b là số nguyên dương và bốn số a + b, a − b, × b, ÷ b là khác nhau và tất cả đều là số nguyên dương. Giá trị nhỏ nhất có thể của a + b là gì?
Giả sử a và b là số nguyên dương và bốn số a + b, a − b, × b, ÷ b là khác nhau và tất cả đều là số nguyên dương. Giá trị nhỏ nhất có thể của a + b là gì?
\(a,b\)nguyên dương nên hiển nhiên \(a+b,a\times b\)nguyên dương. \(a-b\)nguyên dương khi \(a>b\).
\(a\times b,a\div b\)có giá trị khác nhau nên \(b\ne1\).
Với \(b=2\): xét các giá trị của \(a\)để \(a\div b\)nguyên dương.
- \(a=2\): \(a-b=0\)không thỏa mãn.
- \(a=4\): \(a-b=a\div b=2\)không thỏa mãn.
- \(a=6\): thỏa mãn. Khi đó \(a+b=8\).
Với \(b\ge3\)thì để thỏa mãn thì \(a\ge2b\)khi đó \(a+b\ge3b\ge9>8\).
Vậy giá trị nhỏ nhất của \(a+b\)là \(8\).
Bài 1 Cho A=1-7+13-19+25-31+....Biết A có 20 số hạng.Tính giá trị của biểu thức A
Bài 2 Cho biểu thức B=n+4 / n-3
a,Số nguyên n thỏa mãn điều gì để B là phân số?
b,Tìm tất cả các số nguyên dương n để B có giá trị là số nguyên
c,Tìm tất cả các số nguyên n để B có giá trị bé hơn 0
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Bài 1 :
Số hạng thứ 20 của biểu thức A là : 1+(20-1).6=115
Ta có biểu thức :
A=1-7+13-19+25-31+...+109-115
=(1-7)+(13-19)+(25-31)+...+(109-115) (có tất cả 10 cặp)
=(-6)+(-6)+(-6)+...+(-6)
=(-6).10=-60
Vậy giá trị của biểu thức A là -60.
Chúc bạn học tốt!
#Huyền#
Câu hỏi của tran gia nhat tien - Toán lớp 8 - Học trực tuyến OLM
Cho biết tập hợp tất cả các giá trị của tham số m để phương trình 2 x 2 + 1 x 2 - 3 x + 1 x - 2 m + 1 = 0 có nghiệm là S = [ - a b ; + ∞ ) , với a, b là các số nguyên dương và a b là phân số tối giản. Tính T = a + b .
A. T = 13.
B. T = 17.
C. T = 49.
D. T = 3.
Điều kiện xác định: x ≠ 0 .
Đặt t = x + 1 x ⇒ t 2 − 2 = x 2 + 1 x 2 ≥ 2 ⇒ t ≥ 2 ⇔ t ≥ 2 t ≤ − 2
Phương trình đã cho trở thành 2 t 2 − 2 − 3 t − 2 m + 1 = 0
⇔ 2 t 2 − 3 t − 2 m − 3 = 0 ⇔ 2 t 2 − 3 t − 3 = 2 m ( 1 )
Xét hàm số y = f ( t ) = 2 t 2 − 3 t − 3 có bảng biến thiên:
(1) Có nghiệm t thỏa mãn
t
≥
2
t
≤
−
2
k
h
i
2
m
≥
−
1
2
m
≥
11
⇔
m
≥
−
1
2
⇒
S
=
−
1
2
;
+
∞
Vậy T = 3
Đáp án cần chọn là: D
cho số nguyên dương a -2 là ước của 3a^2-2a+10.tính tổng tất cả các giá trị có thể của a
Tìm tất cả các số nguyên dương A có hai chữ số sao cho A chỉ thỏa mãn đúng 2 trong 4 tính chất dưới đây:
a) A là bội số của 5
b) A là bội số của 21
c) A + 7 là số chính phương
d) a - 20 là số chính phương
Tìm các số tự nhiên k để cho số 2k + 24 + 27 là một số chính phương
Tìm các số nguyên x sao cho A = x(x-1)(x-7)(x-8) là một số chính phương
Cho A = p4 trong đó p là một số nguyên tố
a. Số A có những ước dương nào ?
b. Tìm các giá trị của p để tổng các ước dương của A là một số chính phương
n là số nguyên dương và k là tích của tất cả các số nguyên từ 1 đến n. Nếu k là bội số của 1440 thì giá trị nhỏ nhất có thể có của n là A. 8 B. 12 C. 16 D. 18 E. 24
Lời giải:
$1440=2^5.3^2.5$
Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$
Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$
Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$
Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$