Tìm GTNN của\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs
tìm GTNN và GTLN của hs y=\(\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)
\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)
\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)
\(=\left|x-1\right|-\left|x+1\right|\)
+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)
+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)
+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)
\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)
Ta thấy:
Với \(x\ge1\) ta tìm được \(Min_y=-2\)Với \(x< -1\) ta tìm được \(Max_y=2\)
Tìm Gtnn của A=\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}=\left|x+1\right|+\left|1-x\right|\ge2\left|x+1+1-x\right|=4\)
Dấu "=" xảy ra khi \(\left(x+1\right)\left(1-x\right)\ge0\Leftrightarrow-1\le x\le1\)
Vậy GTNN của A là 4.
Tìm x để các bthuc sau đạt gtnn,tìm gtnn đó
\(\sqrt{x-4}-2\)
\(x-\sqrt{x}\)
\(x-4\sqrt{x}+10\)
\(\sqrt{x^2-2x+4+1}\)
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$
Bài 3:
$x-4\sqrt{x}+10$
ĐKXĐ: $x\geq 0$
Ta có: $x-4\sqrt{x}+10=(x-4\sqrt{x}+4)+6=(\sqrt{x}-2)^2+6\geq 0+6=6$
Vậy gtnn của biểu thức là $6$. Giá trị này đạt được khi $\sqrt{x}-2=0\Leftrightarrow x=4$
Tìm GTLN (nếu có) và GTNN (nếu có) của các biểu thức sau:
a) \(1+\sqrt{2-x},\sqrt{x-3}-2,1-3\sqrt{1-2x}\)
b) \(\sqrt{4-x^2};\sqrt{2x^2-x+3};1-\sqrt{-x^2+2x+5}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Tìm GTNN của hàm số y=\(\sqrt[3]{x^4+2x^2+1}\) - \(\sqrt[3]{x^2+1}+1\)
help me
Đặt \(\sqrt[3]{x^2+1}=t\left(t\ge1\right)\)
\(y=f\left(t\right)=t^2-t+1\)
\(minf\left(t\right)=f\left(1\right)=1\)
\(minf\left(t\right)=1\Leftrightarrow t=1\Leftrightarrow\sqrt[3]{x^2+1}=1\Leftrightarrow x=0\)
Cho A=\(\frac{2x+4}{1-x\sqrt{x}}+\frac{1+\sqrt{x}}{1-x}-\frac{1+2\sqrt{x}}{1+\sqrt{x}-2x}\)
a) Rút gọn A
b) Tìm GTNN của A
Cho x là số thực. Tìm GTNN:
\(P=\frac{\sqrt{3\left(2x^2+2x+1\right)}}{3}+\frac{1}{\sqrt{2x^2+\left(3-\sqrt{3}\right)x+3}}+\frac{1}{\sqrt{2x^2+\left(3+\sqrt{3}\right)x+3}}\)
Rút gọn
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
- tìm GTNN của C
- tìm x để N= \(\dfrac{2\sqrt{x}}{C}\) nhận giá trị nguyên
*Rút gọn
Ta có: \(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Ta có: \(C=x-\sqrt{x}+1\)
\(=x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{x}=\dfrac{1}{2}\)
hay \(x=\dfrac{1}{4}\)
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\left(x>0;x\ne1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)
Vậy \(C_{min}=\dfrac{3}{4}\)
\(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}\)
Áp dụng AM-GM có: \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\)
Dấu "=" xảy ra khi x=1 (ktm đk)
Suy ra dấu bằng ko xảy ra \(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2-1=1\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}< 2\)
\(\Rightarrow N< 2\) mà \(N>0\),\(N\) nguyên
\(\Rightarrow N=1\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{5}}{2}\\\sqrt{x}=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7+3\sqrt{5}}{2}\\x=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\) (tm)
Vậy...
\(\Rightarrow C=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\) * \(\Rightarrow C=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
* Ta có \(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}>0\left(1\right)\)
Xét \(N-2=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2x+2\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2x+4\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}< 0\left(dox\ne1\right)\Rightarrow N< 2\left(2\right)\) Từ (1) và (2) \(\Rightarrow0< N< 2\). Mà N nguyên nên N=1 \(\Rightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\Rightarrow2\sqrt{x}=x-\sqrt{x}+1\Leftrightarrow x-3\sqrt{x}+1=0\)
\(\Delta=9-4=5\Rightarrow\) pt có 2 nghiệm phân biệt: \(x_1=\dfrac{\sqrt{5}+3}{2}\left(TM\right);x_2=\dfrac{3-\sqrt{5}}{2}\left(TM\right)\)