tìm các số nguyên a và b biết
a/7-1/2=1/b+1
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
Bài 1:
a: Gọi d=ƯCLN(n+2;n+3)
=>n+2⋮d và n+3⋮d
=>n+3-n-2⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+2;n+3)=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;9n+4)
=>\(\begin{cases}2n+1\vdots d\\ 9n+4\vdots d\end{cases}\Rightarrow\begin{cases}18n+9\vdots d\\ 18n+8\vdots d\end{cases}\)
=>18n+9-18n-8⋮d
=>1⋮d
=>d=1
=>ƯCLN(2n+1;9n+4)=1
=>2n+1 và 9n+4 là hai số nguyên tố cùng nhau
Bài 2:
a: ƯCLN(a;b)=24
=>a⋮24 và b⋮24
a+b=192
mà a⋮24 và b⋮24
nên (a;b)∈{(24;168);(168;24);(48;144);(144;48);(72;120);(120;72);(96;96)}
mà ƯCLN(a;b)=24
nên (a;b)∈{(24;168);(168;24);(72;120);(120;72)}
b: ƯCLN(a;b)=6
=>a⋮6 và b⋮6
ab=216
mà a⋮6 và b⋮6
nên (a;b)∈{(6;36);(36;6);(12;18);(18;12)}
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
Bài 2:
b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.
Khi đó:
$ab=6x.6y=216$
$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$
$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Bài 1:
a: Gọi d=ƯCLN(n+2;n+3)
=>n+2⋮d và n+3⋮d
=>n+3-n-2⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+2;n+3)=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;9n+4)
=>\(\begin{cases}2n+1\vdots d\\ 9n+4\vdots d\end{cases}\Rightarrow\begin{cases}18n+9\vdots d\\ 18n+8\vdots d\end{cases}\)
=>18n+9-18n-8⋮d
=>1⋮d
=>d=1
=>ƯCLN(2n+1;9n+4)=1
=>2n+1 và 9n+4 là hai số nguyên tố cùng nhau
Bài 2:
a: ƯCLN(a;b)=24
=>a⋮24 và b⋮24
a+b=192
mà a⋮24 và b⋮24
nên (a;b)∈{(24;168);(168;24);(48;144);(144;48);(72;120);(120;72);(96;96)}
mà ƯCLN(a;b)=24
nên (a;b)∈{(24;168);(168;24);(72;120);(120;72)}
b: ƯCLN(a;b)=6
=>a⋮6 và b⋮6
ab=216
mà a⋮6 và b⋮6
nên (a;b)∈{(6;36);(36;6);(12;18);(18;12)}
\(\dfrac{-2}{9}\)và\(\dfrac{6}{-27}\) b:\(\dfrac{-1}{-5}\)và\(\dfrac{4}{25}\)
Các cặp phân số sau có bằng nhau ko?vì sao?
Bài3: Tìm số nguyên X biết
a)\(\dfrac{-28}{35}\)=\(\dfrac{16}{x}\)
b)\(\dfrac{x+7}{15}\)=\(\dfrac{-24}{36}\)
giúp mình với ae cứu tôi ae cứu tôi :((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
Bài 2:
a: -2*(-27)=54
6*9=54
=>Hai phân số này bằng nhau
b: -1/-5=1/5=5/25<>4/25
Bài 3:
a: =>16/x=-4/5
=>x=-20
b: =>(x+7)/15=-2/3
=>x+7=-10
=>x=-17
a) \(\dfrac{-2}{9}\) và \(\dfrac{6}{-27}\)
\(\dfrac{6}{-27}=\dfrac{6:\left(-3\right)}{\left(-27\right):\left(-3\right)}=\dfrac{-2}{9}\)
Vậy \(\dfrac{-2}{9}=\dfrac{6}{-27}\)
b) \(\dfrac{-1}{-5}\) và \(\dfrac{4}{25}\)
\(\dfrac{-1}{-5}=\dfrac{\left(-1\right).\left(-5\right)}{\left(-5\right).\left(-5\right)}=\dfrac{5}{25}\)
Do \(5\ne4\Rightarrow\dfrac{5}{25}\ne\dfrac{4}{25}\)
Vậy \(\dfrac{-1}{-5}\ne\dfrac{4}{25}\)
Bài 3
a) \(\dfrac{-28}{35}=\dfrac{16}{x}\)
\(x=\dfrac{35.16}{-28}\)
\(x=-20\)
b) \(\dfrac{x+7}{15}=\dfrac{-24}{36}\)
\(\left(x+7\right).36=15.\left(-24\right)\)
\(36x+252=-360\)
\(36x=-360-252\)
\(36x=-612\)
\(x=\dfrac{-612}{36}\)
\(x=-17\)
tìm các số nguyên x , biết
a, ( x+7) . (x-15)
b, 8x + (-7) . x = -33
c, -12 . ( x - 5) + 7 . (3 - x) = 5
d,(-2) . (x +1) - (x - 5) = -2x
e, (-2) . x + 5 = (-3) . (-3) + 8
g, -12x = 15.(-4) - 12
b: =>x(8-7)=-33
=>x=-33
c: =>-12x+60+21-7x=5
=>-19x=-76
hay x=4
d: =>-2x-2-x+5+2x=0
=>3-x=0
hay x=3
tìm hai số a và b biết
a) a-b=1 và 2a+b=5
b)2a-b=7 và a+b=4
\(a,\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2b+2+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1+1=2\\b=1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}2a-4+a=7\\b=4-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{11}{3}\\b=4-\dfrac{11}{3}=\dfrac{1}{3}\end{matrix}\right.\)
tìm số nguyên x biết
a, 2x+1/3=x-5/2 b, 4(x-2) ^2/3=12
25/30=2x+3/6 -7/x+1=6/x+27
a: =>2x-x=-5/2-1/3
=>x=-17/6
b: =>4(x-2)2=36
=>(x-2)2=9
=>x-2=3 hoặc x-2=-3
hay x=5 hoặc x=-1
c: =>2x+1/2=5/6
=>2x=1/3
hay x=1/6
a: =>2x-x=-5/2-1/3
=>x=-17/6
b: =>4(x-2)2=36
=>(x-2)2=9
=>x-2=3 hoặc x-2=-3
hay x=5 hoặc x=-1
c: =>2x+1/2=5/6
=>2x=1/3
hay x=1/6
Tìm các đơn thức A và B biết
a) -x2y + A + 2xy2 - B = 3x2y - 4xy2
b) 5xy2 - A - 6yx2 + B = -7xy2 + 8x2y
c)5xy3 - A - 5/8yx3 + B = 2+1/4xy3 - 7/6x3y
a: A+2xy^2-x^2y-B=3x^2y-4xy^2
=>A-B=3x^2y-4xy^2-2xy^2+x^2y=4x^2y-6xy^2
=>A=4x^2y; B=6xy^2
b: 5xy^2-A-6x^2y+B=-7xy^2+8x^2y
=>-A+B=-7xy^2+8x^2y-5xy^2+6x^2y=14x^2y-12xy^2
=>A=12xy^2; B=14x^2y
c: 5xy^3-A-5/8x^3y+B=2+1/4xy^3-7/6x^3y
=>-A+B=2+1/4xy^3-7/6x^3y-5xy^3+5/8x^3y
=>B-A=-19/4xy^3-13/24x^3y+2
=>B=-19/4xy^3; A=13/24x^3y-2
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 2 có lỗi không bạn?
q+qp> 2 mà đây là 1 số nguyên tố nên đây là số lẻ
mà dù q chẵn hay lẻ thì q+qp chẵn (vô lý)
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 165
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 2:
a: \(p^2-2q^2=17\)
=>\(2q^2=p^2-17\)
=>\(q^2=\frac{p^2-17}{2}\)
=>\(q^2\) ⋮2
=>q⋮2
mà q là số nguyên tố
nên q=2
Ta có: \(p^2-2q^2=17\)
=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)
=>p=5(nhận)
b: Đặt \(A=q+q^{p}\)
p là số nguyên tố nên p>1
=>p-1>0
Ta có: \(A=q+q^{p}\)
\(=q\left(q^{p-1}+1\right)\)
Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)
=>\(q^{p-1}=0\) và q là số nguyên tố
mà \(q^{p-1}<>0\) \(\forall\) q
nên (q;p)∈∅