Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Đức Anh
Xem chi tiết
lalalalala12345
Xem chi tiết
Phùng Minh Quân
16 tháng 6 2018 lúc 16:20

Ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0^3\)

\(\Leftrightarrow\)\(\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(\frac{1}{z}\right)^3+3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)=0\)

\(\Leftrightarrow\)\(\frac{1^3}{x^3}+\frac{1^3}{y^3}+\frac{1^3}{z^3}=-3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)\)

Lại có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\\\frac{1}{y}+\frac{1}{z}=\frac{-1}{x}\\\frac{1}{z}+\frac{1}{x}=\frac{-1}{y}\end{cases}}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(-3\right).\frac{-1}{z}.\frac{-1}{x}.\frac{-1}{y}\)

\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm ) 

Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Chúc bạn học tốt ~ 

Đàm Thị Minh Hương
16 tháng 6 2018 lúc 16:22

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{-3}{x^2y}-\frac{3}{xy^2}=\frac{-3}{xy}.\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{-3}{xy}.-\frac{1}{z}=\frac{3}{xyz}\)

Đinh quang hiệp
16 tháng 6 2018 lúc 19:09

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(2\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\left(\frac{1}{x^3}+\frac{1}{z^3}\right)+\left(\frac{1}{y^3}+\frac{1}{z^3}\right)\)

\(=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x^2}-\frac{1}{xy}+\frac{1}{y^2}\right)+\left(\frac{1}{x}+\frac{1}{z}\right)\left(\frac{1}{x^2}-\frac{1}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{y^2}-\frac{1}{yz}+\frac{1}{z^2}\right)\)

\(=-\frac{1}{z}\left(\frac{1}{x^2}-\frac{1}{xy}+\frac{1}{y^2}\right)-\frac{1}{y}\left(\frac{1}{x^2}-\frac{1}{xz}+\frac{1}{z^2}\right)-\frac{1}{x}\left(\frac{1}{y^2}-\frac{1}{yz}+\frac{1}{z^2}\right)\)

\(=-\frac{1}{x^2z}+\frac{1}{xyz}-\frac{1}{y^2z}-\frac{1}{x^2y}+\frac{1}{xyz}-\frac{1}{yz^2}-\frac{1}{xy^2}+\frac{1}{xyz}-\frac{1}{xz^2}\)

\(=\left(-\frac{1}{x^2z}-\frac{1}{x^2y}\right)+\left(-\frac{1}{xy^2}-\frac{1}{y^2z}\right)+\left(-\frac{1}{xz^2}-\frac{1}{yz^2}\right)+\frac{3}{xyz}\)

\(=-\frac{1}{x^2}\left(\frac{1}{z}+\frac{1}{y}\right)-\frac{1}{y^2}\left(\frac{1}{x}+\frac{1}{z}\right)-\frac{1}{z^2}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{3}{xyz}\)

\(=-\frac{1}{x^2}\cdot-\frac{1}{x}+-\frac{1}{y^2}\cdot-\frac{1}{y}+-\frac{1}{z^2}\cdot-\frac{1}{z}+\frac{3}{xyz}=\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+\frac{3}{xyz}\)

\(\Rightarrow2\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+\frac{3}{xyz}\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)(đpcm)

Lê Gia Bảo
Xem chi tiết
dbrby
Xem chi tiết
Đinh Đức Hùng
2 tháng 1 2020 lúc 13:31

BĐT\(\Leftrightarrow\left(\frac{1}{x-1}\right)^3+\left(\frac{x-1}{y}\right)^3+\left(\frac{1}{y}\right)^3\ge3\left(\frac{1}{x-1}+\frac{x-1}{y}+\frac{1}{y}-2\right)\)

Đặt \(\left(\frac{1}{x-1};\frac{x-1}{y};\frac{1}{y}\right)=\left(a;b;c\right)\)

BĐT cần cm \(\Leftrightarrow a^3+b^3+c^3\ge3\left(a+b+c-2\right)\)

\(\Leftrightarrow\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3\left(a+b+c\right)\)

Đúng theo AM-GM --> đpcm

Khách vãng lai đã xóa
Trịnh Xuân Diện
Xem chi tiết
PHẠM PHƯƠNG DUYÊN
Xem chi tiết
Tran Le Khanh Linh
13 tháng 5 2020 lúc 4:37

Biến đổi \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(Do x+y=1 => \(\hept{\begin{cases}y-1=-x\\x-1=-y\end{cases}}\))

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^3+y^3-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)

Khách vãng lai đã xóa
Phan Thị Hà Vy
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 11 2019 lúc 20:38

Áp dụng BĐT cô si\(\frac{1}{\left(x-1\right)^3}+1+1\ge\sqrt[3]{\frac{1}{\left(x-1\right)^3}\cdot1\cdot1}=\frac{1}{x-1}\)

\(\Rightarrow\frac{1}{\left(x-1\right)^3}\ge\frac{3}{x-1}-2\left(1\right)\)

\(\left(\frac{x-1}{y}\right)^3+1+1\ge3\sqrt[3]{\left(\frac{x-1}{y}\right)^3\cdot1\cdot1}=\frac{3x-3}{y}\)

\(\Rightarrow\left(\frac{x-1}{y}\right)^3\ge\frac{3x-3}{y}-2\left(2\right)\)

\(\frac{1}{y^3}+1+1\ge\sqrt[3]{\frac{1}{y^3}\cdot1\cdot1}=\frac{3}{y}\Rightarrow\frac{1}{y^3}=\frac{3}{y}-2\left(3\right)\)

Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:

\(VT\ge\frac{3}{x-1}-6+\frac{3x-3}{y}+\frac{3}{y}\)

\(=\frac{3-6x+6}{x-1}+\frac{3x}{y}\)

\(=3\left(\frac{3-2x}{x-1}+\frac{x}{y}\right)\)

Khách vãng lai đã xóa
Xem chi tiết
Hung nguyen
4 tháng 12 2017 lúc 11:27

Ta có:

\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\)

\(\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{\left(x-1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)\)

\(=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)

Ngô Minh Tâm
Xem chi tiết
duong ung van
Xem chi tiết
soyeon_Tiểu bàng giải
9 tháng 3 2017 lúc 21:00

ĐK: \(x;y;z\ne0\)

\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3=\left(\frac{y+z}{x}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{x+y}{z}+1\right)-3+3\)

\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\left(đpcm\right)\)