Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Anh Ngọc
Xem chi tiết
Trần Thanh Phương
16 tháng 8 2019 lúc 16:46

ĐK: \(0\le x\le1\)

Đặt \(t=\sqrt{x}+\sqrt{1-x}\) ( \(t>0\) )

\(\Leftrightarrow t^2=x+1-x+2\sqrt{x\left(1-x\right)}\)

\(\Leftrightarrow t^2-1=2\sqrt{x-x^2}\)

\(\Leftrightarrow\frac{t^2-1}{2}=\sqrt{x-x^2}\)

Ta có \(pt\Leftrightarrow1+\frac{2}{3}\cdot\frac{t^2-1}{2}=t\)

\(\Leftrightarrow1+\frac{t^2-1}{3}-t=0\)

\(\Leftrightarrow t^2-1-3t+3=0\)

\(\Leftrightarrow t^2-3t+2=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

TH1: \(\sqrt{x}+\sqrt{1-x}=1\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)( thỏa (

TH2: \(\sqrt{x}+\sqrt{1-x}=2\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=4\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=\frac{3}{2}\)

\(\Leftrightarrow x\left(1-x\right)=\frac{9}{4}\)

\(\Leftrightarrow4x\left(1-x\right)=9\)

\(\Leftrightarrow4x^2-4x+9=0\)

\(\Leftrightarrow\left(2x+1\right)^2+8=0\)( vô lý )

Vậy \(x\in\left\{0;1\right\}\)

Huỳnh Trần Thảo Nguyên
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Huy Lê
Xem chi tiết
do van tu
Xem chi tiết
Cỏ Cỏ
11 tháng 2 2017 lúc 22:24

Dk 1<x<2

√x^2 -x -2<x+2

5x+6>0

X > -6/5

Bpt vô nghiệm

Lâm Thị Mai Hân
Xem chi tiết
Trần Phúc
22 tháng 8 2018 lúc 20:27

\(A=\left(\frac{\sqrt{3}}{x^2+x\sqrt{x}+3}+\frac{3}{x^3-\sqrt{27}}\right)\left(\frac{x}{\sqrt{3}}+\frac{\sqrt{3}}{x}+1\right)\)

\(\Leftrightarrow A=\left[\frac{\sqrt{3}\left(x-\sqrt{3}\right)}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}+\frac{3}{\left(x-\sqrt{3}\right)\left(x+x\sqrt{3}+3\right)}\right]\left(\frac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\right)\)

\(\Leftrightarrow A=\frac{x\sqrt{3}-3+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}.\frac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(\Leftrightarrow A=\frac{1}{x-\sqrt{3}}\)

Nguyễn Ngọc Mai Anh
Xem chi tiết
Phùng Minh Quân
23 tháng 11 2018 lúc 20:33

olm còn lỗi nên ko trình bày bth đc, bn tự viết lại nhá :)) 

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}=\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}\)

\(\frac{1}{\sqrt{x+1}+\sqrt{x}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\)

\(VT=\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}\)

\(VT=\sqrt{x+3}-\sqrt{x}=1\)

Dễ r -,- 

Nguyễn Tuấn
Xem chi tiết
Hùng Hoàng
Xem chi tiết