Cho hình bình hành ABCD.Lấy các điểm I,J thõa mãn :3IA+2IC-2ID=0
JA-2JB+2JC=0
Chứng minh:I;J;O thẳng hàng với O là giao điểm của AC và BD
Cho hình bình hành ABCD tâm O. Lấy các điểm I,J thõa mãn :3IA+2IC-2ID=0 và JA-2JB+2JC=0.Chứng minh:I;J;O thẳng hàng
(vecto cả nha)
\(3IA+2\left(IC+DI\right)=0\Leftrightarrow3IA+2DC=0\)
\(\Leftrightarrow3IO+3OA+2DA+2AC=0\Leftrightarrow3IO+3OA-2AD-4OA=0\)
\(\Leftrightarrow3IO-OA-2AD=0\Rightarrow3IO=OA+2AD\) (1)
\(JA-2JB+2JC=0\Leftrightarrow JA+2\left(BJ+JC\right)=0\)
\(\Leftrightarrow JA+2BC=0\Leftrightarrow JO+OA+2BC=0\)
\(\Leftrightarrow JO+OA+2AD=0\Rightarrow OJ=OA+2AD\) (2)
(1); (2) \(\Rightarrow OJ=3IO\) hay I;J;O thẳng hàng
Phân tích dài quá, ko hay lắm :(
Cho tam giác ABC. Xác định điểm I, J, K thỏa các điều kiện sau: 3IA+2IC=0 ; 2JA+3JB=3BC ; KA+KB+KC=0
Bài 1: cho tam giác ABC, 2 điểm I và J đc xác định bởi IA + 3IC=0 ; JA + 2JB + 3JC =0
xác định 2 điểm I và J
cho tam giác ABC tìm điểm J sao cho vecto JA-JB-2JC=0
Lời giải:
\(\overrightarrow{JA}-\overrightarrow{JB}-2\overrightarrow{JC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{BA}-2\overrightarrow{JC}=\overrightarrow{0}\)
\(\Leftrightarrow \frac{1}{2}\overrightarrow{BA}=\overrightarrow{JC}\)
Do đó, tập hợp điểm C nằm trên đường tròn tâm $C$ bán kính bằng \(\frac{AB}{2}\)
cho tam giác ABC xác định bởi IA +3IC =0 và JA+2JB+3JC=0 CHỨNG minh I,J,B thẳng hàng
là vecto hết nha
Cái dạng này mk ms đok qua nên có j sai bỏ qua nha :D
\(\overrightarrow{IA}+3\overrightarrow{IC}=0\Rightarrow\overrightarrow{IJ}+\overrightarrow{JA}+3\left(\overrightarrow{IJ}+\overrightarrow{JC}\right)=0\)
\(\Leftrightarrow4\overrightarrow{IJ}+\overrightarrow{JA}++3\overrightarrow{JC}=0\)
Có \(\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=0\)
Trừ vế cho vế
\(\Rightarrow4\overrightarrow{IJ}=2\overrightarrow{BJ}\Leftrightarrow\overrightarrow{BJ}=2\overrightarrow{IJ}\)
=> 3 điểm I,J,B thẳng hàng
cho hình bình hành ABCD.lấy điểm e thuộc BD sao cho BE=DF. chứng minh tứ giác ABCF là hình bình hành
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
Cho hình bình hành ABCD.Lấy hai điểm E và F theo thứ tự thuộc AD và CB sao cho AE=CF Chứng minh rằng: a) Tứ giác BFDE là hình bình hành b) Các đường thẳng AC,BD,EF đồng qui
a, Vì AE=CF và AD=BC (hbh ABCD) nên AD-AE=BC-CF
Do đó DE=BF
Mà ABCD là hbh nên AD//BC hay DE//BF
Vậy BFDE là hbh
b, Gọi O là giao điểm của AC và BD thì O là trung điểm AC,BD (ABCD là hbh)
Ta có BFDE là hbh và O là trung điểm BD nên O là trung điểm EF
Vậy AC,BD,EF đồng quy tại O
Cho tam giác ABC, IA+2IB=0, 3JA+2JC=0, G là trọng tâm. chứng minh I, J, G thằng hàng.