xét phương trình \(\cos^2\)x-(2m-1)cosx +m^2=1/2 Tìm giá trị của m để phương trình có nghiệm là
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Bài 1: Cho phương ẩn x: (1-2m) x – m-4=0 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất.
b) Tìm giá trị của m để phương trình có nghiệm x=2
c) Giải phương trình khi m= 5
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
Số các giá trị thực của tham số m để phương trình (sin x-1)(2cos^2 x - (sinx -1)(2 cos 2 x –(2m+1)cosx+m)=0 có đúng 4 nghiệm thực thuộc đoạn 0 ; 2 π là
A. 1.
B. 2.
C. 3.
D. Vô số.
Đáp án B.
PT: cos x = 1 2 có 2 nghiệm thuộc trên đoạn 0 ; 2 π do đó để PT đã cho có 4 nghiệm thực thuộc đoạn 0 ; 2 π thì
TH1: m= cosx có 1 nghiệm thuộc đoạn 0 ; 2 π
TH2: m= cosx có 2 nghiệm thuộc đoạn 0 ; 2 π trong đó có 1 nghiệm trùng
Vậy m= -1; m=0.
Xét phương trình \(x^2-m^2x+2m+2=0\left(1\right)\)(ẩn x). Tìm các giá trị nguyên dương của m để phương trình (1) có nghiệm nguyên
Cho phương trình: x^2 + 2(m-2)x -(2m-7)=0.Gọi x1,x2 là hai nghiệm của phương trình (1).
Tìm m để phương trình (1) có tổng bình phương (1) có tổng bình phương các nghiệm đạt giá trị nhỏ nhất.
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m: m x 2 + (2m – 1)x + m + 2 = 0
m x 2 + (2m – 1)x + m + 2 = 0 (1)
*Nếu m = 0, ta có (1) ⇔ -x + 2 = 0 ⇔ x = 2
*Nếu m ≠ 0 thì (1) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có : ∆ = 2 m - 1 2 – 4m(m + 2) = 4 m 2 – 4m + 1 – 4 m 2 – 8m
= -12m + 1
∆ ≥ 0 ⇔ -12m + 1 ≥ 0 ⇔ m ≤ 1/12
Vậy khi m ≤ 1/12 thì phương trình đã cho có nghiệm.
Giải phương trình (1) theo m :
Cho phương trình x^2 - 2(m+1)x-2m-1=0. Tìm các giá trị của tham số m để phương trình có 2 nghiệm phân biệt
Pt đã cho có 2 nghiệm pb khi và chỉ khi:
\(\Delta'=\left(m+1\right)^2-\left(-2m-1\right)>0\)
\(\Leftrightarrow m^2+4m+2>0\)
\(\Rightarrow\left[{}\begin{matrix}m>-2+\sqrt{2}\\m< -2-\sqrt{2}\end{matrix}\right.\)
Cho phương trình (2m - 1) x 2 - 2(m + 4)x + 5m + 2 = 0 ( m ≠ 1 2 )
Tìm giá trị của m để phương trình có nghiệm.