/ x 5 / /y-3 / =10
Tìm x , y biết :
a, x X (x-y) = 3/10 và y X (x-y) = -3/10
b, 3 X (2 X x + 3) X (3 X x - 5) < 0
c, -5 X (3 X y + 10 X (4 X y - 3) > 0
Làm phép chia:
a,(10 mũ 12 + 5 mũ 11 . 2 mũ 9 - 5 mũ 13 . 2 mũ 8) : 4 . 5 mũ 5 . 10 mũ 6
b,[5(x - y)mũ 4 - 3(x -y)mũ 3 + 4(x -y)mũ 2] : (y - x)mũ 2
c,[(x+y)mũ 5 - 2(x+y)mũ 4 + 3(x+y)mũ 3] : [-5(x+y)mũ 3]
a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)
\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)
\(=2^4.5+2-5^2\)
\(=57\)
b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)
\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)
c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)
\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)
\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)
a) Tính giá trị biểu thức 1/2 . x^5 . y - 3/4 . x^5 . y + x^5 . y tại x = 2 và y = -1 ( Bằng 2 cách )
b) Tính giá trị biểu thức 5 . x^10 . y^15 + 3 . x^10 . y^15 - 8 . x^10 . y^15 tại x = 2019 và y = 2020
Bạn nào làm được mình sẽ tick cho nha!
x/y = 9/10 ; y/z =5/3 và x-y+z=35
X*Y=3/5; Y*Z=4/5;Z*X=3/4
X/2=Y/3 ; Y/4=Z/5 và x+y+z=10
x/y=3/4 và x-y=5
x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1)
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra:
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau)
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30
Tim x, y biết x^2-y^2/3=x^2+y^2/-5 va x^10*y^10=1024
\(x^2-\frac{y^2}{3}=x^2+\frac{y^2}{-5}\)nếu bạn chép sai đề => kq sài vô lý
sua de lam tiep
\(\left(xy\right)^{10}=1024=2^{10}=>xy=2=>\left(xy\right)^2=4\)
\(\frac{x^2-y^2}{3}=\frac{x^2+y^2}{-5}=\frac{2x^2}{-2}=-x^2\)
\(\Leftrightarrow\frac{x^2-y^2}{3}=-x^2=>4x^2-y^2=0\)\(\Leftrightarrow4x^2=y^2\Leftrightarrow4x^2.y^2=y^2.y^2=>y^4=4.4=16=2^4=>y=!2!\)
KL:
y=!2!
x=!1!
(x,y)=(-1,-2); (1,2)
y x 4/5 + y x 1/5 = 10/3
\(y=\dfrac{10}{3}:\left(\dfrac{4}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}:1=\dfrac{10}{3}\)
y.(4/5+1/5)=10/3
y.1=10/3
x=10/3:1
y=10/3
`y.(4/5+1/5)=10/3`
`y=10/3`
`y=10/3:1`
`y=10/3``
tìm x,y,z biết:
câu 3:x/y=5/9 và x-y=-40
câu b: x/2=y/3 và 5.x-2.y=28
câu c: x/5=y/7=z/10 và x+y-z=20
câu d: x/3=y/4=z/5 và 3.x-2.y+2.z=121
câu e: x/4=y/2 và y/3=z/5 và x+y-z=20
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
Trả lời:
7, 5( x + y )2 + 15( x + y )
= 5( x + y )( x + y + 3 )
9, 7x( y - 4 )2 - ( 4 - y )3
= 7x ( 4 - y )2 - ( 4 - y )
= ( 4 - y )2 ( 7x - 4 + y )
11, ( x + 1 )( y - 2 ) - ( 2 - y )2
= ( x + 1 )( y - 2 ) - ( y - 2 )2
= ( y - 2 )( x + 1 - y + 2 )
= ( y - 2 )( x - y + 3 )
8, 9x ( x - y ) - 10 ( y - x )2
= 9x ( x - y ) - 10 ( x - y )2
= ( x - y )[ ( 9x - 10 ( x - y ) ]
= ( x - y )( 9x - 10x + 10y )
= ( x - y )( 10y - x )
10, ( a - b )2 - ( a + b )( b - a )
= ( b - a )2 - ( a + b )( b - a )
= ( b - a )( b - a - a - b )
= - 2a( b - a )
= 2a ( a - b )
12, 2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )
= 2x ( x - 3 ) + y ( x - 3 ) - ( x - 3 )
= ( x - 3 )( 2x + y - 1 )