y(x-y)-2x+2y tai x=8, y=7
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)
\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)
Thế vào pt dưới:
\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết
giải các hệ phương trình:
1, 2x+3|y-1|=5 và 3x+2y=7
2, |x+1|+|y-1|=5 và |x+1|-4y+4=0
3, (2x+1)/4-(y-3)/3=1/12 và (x+5)/2=(y+7)/3 -4
4, 1/x+1/y=1/12 và 8/x+15/y=1
5, 2/(x+2y) +1/(y+2x)=3 và 4/(x+2y) -3/(y+2x)=1
1. x^2-y^2-2x+2y 2. x^3-x+3x^2y+3xy^2+y^3-y. 3. 4x^4y^4+1. 4. x^2-2x-4y^2-4y. 5.x^3-x^2-x+1. 6.x^2y-x^3-9y+9x. 7.x^3-2x^2+x-xy^2. 8.x^2-2x-4y^2-4y.
Ói , hoa mắt chóng mặt nhức đầu ,
Rút gon phân thức a)8x^3+y^3/y^3+2xy^2+y^2-4x^2 b)x^2-2x-8/2x^2+9x+10 c)6x-x^2-5/5x^6-x^7. d)x^3+64/2x^3-8x^2+32x. e) x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
Bài 1 Phân tich các đa thức sau thành nhân tử: a) x(2x -y) - y(2x -y) c) x^2- 3x + 3y -y^2 b) x²–6x - 7 d) x³- xy + 2y - 8
a: \(x\left(2x-y\right)-y\left(2x-y\right)=\left(2x-y\right)\left(x-y\right)\)
c: \(x^2-3x+3y-y^2\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
b: \(x^2-6x-7=\left(x-7\right)\left(x+1\right)\)
a) \(x\left(2x-y\right)-y\left(2x-y\right)=\left(2x-y\right)\left(x-y\right)\)
b) \(x^2-6x-7=x\left(x-7\right)+\left(x-7\right)=\left(x-7\right)\left(x+1\right)\)
c) \(x^2-3x+3y-y^2=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)=\left(x-y\right)\left(x+y-3\right)\)
d) \(x^3-xy+2y-8=\left(x-2\right)\left(x^2+2x+4\right)-y\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+4-y\right)\)
a)x(2x - y) - y(2x - y)
= (x - y)(2x - y)
c)x2 - 3x + 3y - y2
= x2 - y2 - 3x + 3y
= (x + y)(x - y) - 3(x - y)
= (x + y - 3)(x - y)
b)x2 - 6x - 7
= x2 + x - 7x - 7
= x(x + 1) - 7(x + 1)
= (x - 7)(x + 1)
d)x3 - xy + 2y - 8
= x3 - 8 - xy + 2y
= x3 - 23 - y(x - 2)
= (x - 2)(x2 + 2x + 4) - y (x - 2)
= (x - 2 - y)(x2 + 2x + 4)
tim x,y thuoc Z biet
|y|.|2x+3|=8
|2x+4|+|y-3|=0
|x-1|+|2y+7|=3
|x+5|+|2y+6| nho hon hoac bang 0
Tính giá trị biểu thức:
a) A = a(b + 3) - b(3 + b) tại a = 2003 và b = 1997;
b) B = b 2 -8b- c(8 - b) tại b = 108 và c = -8;
c) C = xy(x + y) - 2x - 2y tại xy = 8 và x + y = 7;
d) D = x 5 (x + 2y)- x 3 y(x + 2y) + x 2 y 2 (x + 2y) tại x = 10 và y = -5.
a) Cách 1; Thay a = 2003; b = 1997 vào biểu thức rồi thực hiện tính toán thu được A = 12000.
Chú ý: Trong biểu thức trên việc thay trực tiếp khiến việc tính toán khó khăn.
Cách 2: Phân tích A = (b + 3)(a - b), thay a = 2003 và b = 1997 vào biểu thức A = 12000.
b) Phân tích B = (b - 8)(b + c), thay = 108 và c = -8 vào biểu thức B = 10000.
c) Với xy = 8; x + y = 7, ta không tìm được giá trị nguyên x, y. Phân tích c = (x + y)(xy - 2), thay xy = 8; x + y = 7 vào biểu thức c = 42.
d) Phân tích D = (x + 2y)( x 5 - x 3 y + x 2 y 2 )
Nhận xét: Với x -10; y = -5 Þ x+ 2y = 0 => D = 0.
Tính giá trị biểu thức
A=x^3+3x^2+3x+2 tại x =19
B= (2x+2y)^2-(2x+2y).(x+2y).(x+y)^2 tai x= 1999 y =2000