|x-3|+(y+4)^2=0;x+y=
x^2-2*x*y+x+y=0, x^4-4*x^2*y+3*x^2+y^2=0
giải hệ phương trình
x^2-2*x*y+x+y=0
x^4-4*x^2*y+3*x^2+y^2=0
|x+5|+(3y-4)^2016=0
(5x-y)^2016+|x^2-4|^2017<=0
(2x-1)^2014+(y-2/5)^2016+|x+y+z|=0
|x-1|+|x-2|+|y-3|+|x-4|=3
ìm x,y,z thuộc Q:
a)|x+9/2|+|y+4/3|+|z+7/2| nhỏ hơn hoặc bằng 0
b)|x+3/4|+|y-2/5|+|z+1/2| nhỏ hơn hoặc bằng 0
c) |x+19/5|+|y+1890/1975|+|z-2004|=0
d) |x+3/4|+|y-1/5|+|x+y+z|=0
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
b,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{2}{5}\right|\ge0\forall y\\ \left|z+\dfrac{1}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\forall x,y,z\\ \)
Mà \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{2}{5}\right|=0\\\left|z+\dfrac{1}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{2}{5}=0\\z+\dfrac{1}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{2}{5}\\z=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy ...
c,
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x\\ \left|y+\dfrac{1890}{1975}\right|\ge0\forall y\\ \left|z-2004\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-1890}{1975}=\dfrac{-378}{395}\\z=2004\end{matrix}\right. \)
Vậy ...
Tìm x ,y ,z biet :
a, |x+3/4|+|y-1/5|+|x+y+z|=0
b, |3x-4|+|3y-5|=0
c,|x+3/4|+|y-2/5|+|z+1/2| <0
d, |x+1/5|+|3-y|=0
a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)
\(\Rightarrow|x+\frac{3}{4}|=0\) \(\Rightarrow|y-\frac{1}{5}|=0\) \(\Rightarrow|x+y+z|=0\)
\(\Rightarrow x+\frac{3}{4}=0\) \(\Rightarrow y-\frac{1}{5}=0\) \(\Rightarrow x+y+z=0\)
\(x=\frac{-3}{4}\) \(y=\frac{1}{5}\) thay x=-3/4; y=1/5 vào biểu thức trên
ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)
\(z=0-\frac{-3}{4}-\frac{1}{5}\)
VẬY X=-3/4; Y=1/5; Z=11/20
B) \(|3x-4|+\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)
\(\Rightarrow\left|3x-4\right|=0\) \(\Rightarrow\left|3y-5\right|=0\)
\(3x-4=0\) \(3y-5=0\)
\(3x=4\) \(3y=5\)
\(x=\frac{4}{3}\) \(y=\frac{5}{3}\)
VẬY X= 4/3; Y=5/3
C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)
MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG
\(\Rightarrow x;y;z\in\varnothing\)
d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=0\) \(\Rightarrow\left|3-y\right|=0\)
\(x+\frac{1}{5}=0\) \(3-y=0\)
\(x=\frac{-1}{5}\) \(y=3\)
VẬY X= -1/5; Y=3
CHÚC BN HỌC TỐT!!!!!!!
Ta có :
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)
Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)
\(b)\) Ta có :
\(\left|3x-4\right|+\left|3y-5\right|=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-4=0\\3y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4\\3y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\y=\frac{5}{3}\end{cases}}}\)
Vậy \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)
10 Phân tích các đa thức sau thành nhân tử:
a) 5xy(x-y)-2x+2y ; b) 6x-2y-x(y-3x)
c) x^2+4x-xy-4y ; d) 3xy+2z-6y-xz
11 Tìm x, biết: a) 4-9x^2=0 ; b) x^2+x+1/4=0 ; c) 2x(x-3)+(x-3)=0
d) 3x(x-4)-x+4=0 ; e) x^3-1/9x=0 ; f) (3x-y)^2-(x-y)^2=0
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
Tính giá trị của biểu thức sau, biết x+y=0
M=x^4-xy^3+x^3y-y^4-1=0
tính giá trị của biểu thức sau, biết x+y+1=0
D=X^2(x+y)-y^2 (x+y)+x^2-y^2+2(x+y)+3
Tìm x;y;z
A. x:y:z=2:3:4 và x +y+z=365
B. |x-(9/2)|+|y+(4/3)|+ |(7/2)+z|=0
C. [(1/2)×x-5]20+[y^2-(1/4)|=0
D.x^2+[y-(1/10]^4=0
a, \(x:y:z=2:3:4\&x+y+z=365\)
\(x:y:z=2:3:4\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{365}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{365}{9}\\\dfrac{y}{3}=\dfrac{365}{9}\\\dfrac{z}{4}=\dfrac{365}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{730}{9}\\y=\dfrac{365}{3}\\z=\dfrac{1460}{9}\end{matrix}\right.\)
b:\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\\dfrac{7}{2}+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)
c: =>1/2x-5=0 và y^2-1/4=0
=>\(\left\{{}\begin{matrix}x=10\\y\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\end{matrix}\right.\)
d: =>x=0 và y-1/10=0
=>x=0 và y=1/10
(x+y)(x^2+y^2)(x^3+y^3)(x^4+y^4), biết x=-0,(3) và y=1/3
a : \(\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}\) với y ≥ 0 , y ≠ 0
b : \(\dfrac{5}{2}x^3y^3.\sqrt{\dfrac{16}{x^4y^8}}\)với x,y ≠ 0
c : \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)với a ≥ 0 , b ≠ 0
a) \(\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
b) \(\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{\left(x^2y^4\right)^2}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{20x^3y^3}{2x^2y^4}\)
\(=\dfrac{10x}{y}\)
c) \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)
\(=ab^2\dfrac{\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
\(a,\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\left(y\ge0;x,y\ne0\right)\) (sửa đề)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
\(---\)
\(b,\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\left(x,y\ne0\right)\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}\)
\(=\dfrac{5x^3y^3}{2}\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{5x\cdot2}{y}\)
\(=\dfrac{10x}{y}\)
\(---\)
\(c,ab^2\sqrt{\dfrac{3}{a^2b^4}}\left(a>0;b\ne0\right)\) (sửa đề)
\(=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}\)
\(=\dfrac{ab^2\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=\dfrac{ab^2\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
#\(Toru\)
Các bn ơi giúp mình với, ai trả lời nhanh và đúng mìh tick cho:
Bài 1: Tìm x biết:
1) ( 3x - 2 ) . ( 2x - 2/3) = 0
2) 2/3 + 1/3 : x = 3/5
3) x + 4/2000 + x + 3/2001 + x + 2/2002 + x + 1/2003
4) x + 4/2015 + x + 3/2016 + x + 2/2017 + x + 1 + 2018 + x + 2015/2
5) ( 5 - x ) . ( 3x - 1/4 ) > 0
6) ( x + 2/3 ) . ( 1/4 - x ) > 0
7) ( x - 1 ) . ( x - 2 ) / x - 3 > 0
8) x . ( x + y + Z ) = -3; y . ( x + y + Z ) = 4; Z . ( x + y + Z ) = 3
9) xy = 9Z; yZ = 4x; xZ = 16 . y
10) xy = 2/7; yZ = 3/2; Zx = 3/7
11) 5/x + y/4 = 1/8 với x . y thuộc Z
bộ định không làm bài tập về nhà à , thấy bài cái là lên hỏi
có làm nhưng mà quên cách òi giúp cái coi