Những câu hỏi liên quan
AE575DRTQ ỨAE65U5W
Xem chi tiết
Tình Nguyễn Hữu
Xem chi tiết
Akai Haruma
4 tháng 3 2017 lúc 0:48

Lời giải:

Do \(xyz=8\) nên tồn tại các số dương \(a,b,c\) sao cho \((x,y,z)=\left(\frac{2a^2}{bc},\frac{2b^2}{ac},\frac{2c^2}{ab}\right)\)

Khi đó , BĐT cần CM tương đương với:

\(P=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\geq 1\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2}\) \((1)\)

Áp dụng bất đẳng thức AM-GM:

\(a^2b^2+b^2c^2\geq 2ab^2c\). Tương tự với các cặp biểu thức còn lại và cộng theo vế suy ra \(a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Rightarrow abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq 2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Rightarrow a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq (a^2+b^2+c^2)^2\) \((2)\)

Từ \((1),(2)\Rightarrow P\geq 1\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bình luận (0)
kikyou
Xem chi tiết
Nguyen Phuong My
22 tháng 5 2020 lúc 17:59

ko lam thi thoi chui cl ay!!!

Bình luận (0)
 Khách vãng lai đã xóa
Trần Anh Thư
22 tháng 5 2020 lúc 18:03

đù , chuyện giề đang xảy ra vậy man

Bình luận (0)
 Khách vãng lai đã xóa
Johny Jack
22 tháng 5 2020 lúc 18:16

bọn bay ngáo quá rùi  hút cần à chửi tục hơn thánh mé chửi nữa cho phai nick hét bây giờ ,ko tao số má lun 

Bình luận (0)
 Khách vãng lai đã xóa
Trương Khánh Chi
Xem chi tiết
alibaba nguyễn
6 tháng 5 2019 lúc 7:45

Ta có:

\(8=xyz\le\frac{\left(x+y+z\right)^3}{27}\)

\(\Leftrightarrow a=x+y+z\ge6\)

Ta có:

\(A\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(x+y+z\right)+12}\)

\(\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+12}=\frac{a^2}{\frac{a^2}{3}+2a+12}=\frac{3a^2}{a^2+6a+36}\)

Ta chứng minh:

\(\frac{3a^2}{a^2+6a+36}\ge1\)

\(\Leftrightarrow\left(a-6\right)\left(a+3\right)\ge0\)(đúng)

Vậy ta có ĐPCM

Bình luận (0)
alibaba nguyễn
6 tháng 5 2019 lúc 7:52

Èo ngược dấu đoạn cuối mất rồi. Sorry nhìn nhầm

Bình luận (0)
alibaba nguyễn
6 tháng 5 2019 lúc 8:09

Giải lại chơi cách khác. Cái kia sai rồi nên đừng chép vo nha. Chép cái này nha
Đặt \(\left(x;y;z\right)=\left(\frac{2a^2}{bc};\frac{2b^2}{ca};\frac{2c^2}{ab}\right)\) thì ta cần chứng minh

\(A=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ca+c^2a^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2+abc\left(a+b+c\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=1\)

Dấu = xảy ra khi \(a=b=c\)hay \(x=y=z=2\)

Bình luận (0)
Nguyễn Hữu Tình
Xem chi tiết
Doan Quynh
14 tháng 2 2016 lúc 14:55

xl , e mới lớp 7 thôi ạ

Bình luận (0)
Nguyễn Yến Trang
14 tháng 2 2016 lúc 14:59

sorry em mới học lớp 5

sao anh không đem lên học 24h giải quyết cho nhanh

ủng hộ cho mình lên 70 nha các bạn

Bình luận (0)
Bùi Hữu Vinh
Xem chi tiết
Yen Nhi
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bình luận (0)
 Khách vãng lai đã xóa
ghdoes
Xem chi tiết
Anh Nguyen Quoc
Xem chi tiết
Phan Gia Huy
6 tháng 2 2020 lúc 22:47

 Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ

\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)

Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)

Thật vậy,BĐT tương đương với:

\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)

\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)

\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Linh Chi
6 tháng 2 2020 lúc 14:42

Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B

Ta có:

\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)

=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)

=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

Tương tự 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)

\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)

\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)

\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)

\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)

Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z 

=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)

=> \(x+y+z\ge3\)với mọi x, y, z dương

Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)

Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)

Đặt: x + y + z = t ( t\(\ge3\))

Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)

Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)

Từ (1); (2) 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)

Dấu "=" xảy ra <=> x= y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa
Trần Minh Hiếu
3 tháng 6 2020 lúc 18:00
1wwe
455444
rdf333
frgg 
Bình luận (0)
 Khách vãng lai đã xóa
Le Van Hung
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2018 lúc 14:03

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(VT=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\)

\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\)

Cần chứng minh \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)

\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{xz}}{xz\left(4-xz\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)

Cauchy-Schwarz: \(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)

\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)

\(\Leftrightarrow\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)

Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)

Dấu "=" <=> x=y=z=1

Bình luận (0)
Đặng Thái Dương
23 tháng 4 2020 lúc 15:33

em là pô pô nê người con của Thái Nguyên

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 4 2020 lúc 19:12

Bài này có nhiều cách làm. Cách khác:

Gọi vế trái của BĐT là P. Khi đó biến đổi P như sau:

\(P=\left(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\right)+\left(x^2+y^2+z^2\right)\left(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\right)\)

Theo BĐT Bunhiacopsky dạng phân thức ta có:

\(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+zx\right)}\)

\(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\ge\frac{9}{12-\left(xy+yz+zx\right)}\)

Do đó ta được:

\(P\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+xz\right)}+\frac{9\left(x^2+y^2+z^2\right)}{12-\left(xy+yz+xz\right)}\)

\(\ge\frac{3\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}+\frac{9\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}\)

\(\ge\frac{12\left(xy+yz+xz\right)}{12-\left(xy+yz+zx\right)}\ge\frac{36\sqrt[3]{x^2y^2z^2}}{12-3\sqrt[3]{x^2y^2z^2}}\)

đặt \(\sqrt[3]{xyz}=t\le\frac{x+y+z}{3}=1\). Khi đó ta có:

\(\frac{36t^2}{12-3t^2}-4t^3\Leftrightarrow12t^2\left(t-1\right)\left(t^2+t-3\right)\ge0\)

Đánh giá BĐT cuối cùng luôn đúng. BĐT được chứng minh xong

Bình luận (0)
 Khách vãng lai đã xóa