Tìm GTLN
P=12-4x-x2
Q=(x-1)3-x+6
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
1) Tìm GTLN:
A = x2 + 5y2 + 2xy -4x -8y +2015
B= (x- 2012)2 + (x+2013)2
C= (x-1) (2x-1) (2x2- 3x -1) +2017
D= (x-1) (x-3) (x-4) (x-6) +10
C=(2x-1)(x-1)(2x^2-3x-1)+2017
=(2x^2-3x+1)(2x^2-3x-1)+2017
=(2x^2-3x)^2-1+2017
=(2x^2-3x)^2+2016>=2016
Dấu = xảy ra khi 2x^2-3x=0
=>x=0 hoặc x=3/2
D=(x-1)(x-6)(x-3)(x-4)+10
=(x^2-7x+6)(x^2-7x+12)+10
=(x^2-7x)^2+18*(x^2-7x)+72+10
=(x^2-7x+9)^2+1>=1
Dấu = xảy ra khi x^2-7x+9=0
=>\(x=\dfrac{7\pm\sqrt{13}}{2}\)
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Cho biểu thức M= ( x2/ x3-4x + 6/ 6-3x + 1/ x+2) : (x-2 + 10-x2/ x+2)
a. Rút gọn M
b. Tìm các gtri nguyên của x để M đạt GTLN
c. Tìm x để M= 3x
1.Tìm GTNN
B = (x+2)2(x+2)2+(y−15)2(y−15)2 -10
C=(x+3)4+1(x+3)4+1
D = x2−4x+15x2−4x+15
2.Tìm GTLN
B = 4(2x+3)2+15
bài 1: Tìm GTNN của các biểu thức sau:
a) A=x2−3x+4A=x2−3x+4
b) B=2x2−4x+1B=2x2−4x+1
c) C=4x2−4xC=4x2−4x
Bài 2: Tìm GTLN của các biểu thức sau:
a) A=−x−4x+2A=−x−4x+2
b) B=(x+4)(2−x)B=(x+4)(2−x)
Bài 3: Tính giá trị của các biểu thức sau:
a) A=9x2+42x+49A=9x2+42x+49 với x=1x=1
b) B=(x+y)3−x2+2xy−y2B=(x+y)3−x2+2xy−y2 với x−y=−5
Tìm x:
a)(x-6)2-(x+6)2=12
b)36x2-12x+1=81
c)x2-4x-12=0
d)x2-5x-6=0
`a)(x-6)^2-(x+6)^2=12`
`<=>(x-6-x-6)(x-6+x+6)=12`
`<=>-12.2x=12`
`<=>2x=-1`
`<=>x=-1/2`
Vậy `x=-1/2`
`b)36x^2-12x+1=81`
`<=>(6x-1)^2=81`
`<=>(6x-1-9)(6x-1+9)=0`
`<=>(6x-10)(6x+8)=0`
`<=>(3x-5)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac53\\x=-\dfrac43\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2-6x+2x-12=0`
`<=>x(x-6)+2(x-6)=0`
`<=>(x-6)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2-6x+x-6=0`
`<=>x(x-6)+x-6=0`
`<=>(x-6)(x+1)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=4x+a;B=2x+1
2)A=6x-a;B=x+1
3)A=x2-ax+3;B=x-3
4)A=x2-4x-6;B=x+a
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2