Tìm điều kiện để căn thức có nghĩa :
\(\sqrt{x^2-5}\)
a,\(\sqrt{5-4x}\)
b,\(\sqrt{\left(x+1\right)^2}\)
c,\(\sqrt{\dfrac{-1}{x-2}}\)
giúp mình tìm điều kiện để tìm các căn thức sau có nghĩa
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)
\(\Rightarrow\) Với mọt giá trị của x
\(c,ĐK:\dfrac{-1}{x-2}\ge0\)
Vì \(-1< 0\)
\(\Rightarrow x-2< 0\)
\(\Rightarrow x< 2\)
a)
Căn thức có nghĩa thì:
\(5-4x\ge0\\ \Leftrightarrow4x\le5\\ \Rightarrow x\le\dfrac{5}{4}\)
b)
Để căn thức có nghĩa thì:
\(\left(x+1\right)^2\ge0\) (luôn đúng)
Vậy căn thức có nghĩa với mọi giá trị x.
c)
Để căn thức có nghĩa thì:
\(\left\{{}\begin{matrix}-\dfrac{1}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x\ne2\end{matrix}\right.\\ \Rightarrow x< 2\)
tìm điều kiện của x để căn thức a) \(\sqrt{x+5}\) ;b) \(\sqrt{7-x}\); c)\(\sqrt{\dfrac{1}{x+3}}\) ;d)\(\sqrt{\dfrac{-2}{x-3}}\) có nghĩa
a) ĐKXĐ: \(x+5\ge0\Leftrightarrow x\ge-5\)
b) ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\)
c) ĐKXĐ: \(x+3>0\Leftrightarrow x>-3\)
d) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)
tìm điều kiện để căn thức có nghĩa:\(\sqrt{4x-x^2-2}\)
\(\sqrt{4x-x^2-2}\)
ĐKXĐ : \(4x-x^2-2\ge0\)
\(\Leftrightarrow x^2-4x+2\le0\)
Ta có : \(x^2-4x+2=0\)
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot2=8>0\)
=> Phương trình có hai nghiệm
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)
Để \(x^2-4x+2\le0\)
\(\Rightarrow\orbr{\begin{cases}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{cases}}\)
Vậy ....
tìm điều kiện để căn thức có nghĩa:
\(\sqrt{12x^2-17x-5}\)
Sửa đề lại cho đúng nhé :
\(\sqrt{12x^2-17x+5}=\sqrt{12x^2-12x-5x+5}\)
\(=\)\(\sqrt{12x\left(x-1\right)-5\left(x-1\right)}=\sqrt{\left(x-1\right)\left(12x-5\right)}\)
\(btxđ\Leftrightarrow\left(x-1\right)\left(12x-5\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}x-1\ge0;12x-5\ge0\\x-1< 0;12x-5< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ge1;x\le\frac{12}{5}\left(tm\right)\\x< 1;x>\frac{12}{5}\left(ktm\right)\end{cases}}\)
\(\Rightarrow1\le x\le\frac{12}{5}\)
hình như ko phải \(\frac{12}{5}\)mà là \(\frac{5}{12}\)
Rất xin lỗi nha , cho sửa lại chút :
\(\Rightarrow\orbr{\begin{cases}x-1\ge0;12x-5\ge0\\x-1< 0;12x-5< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge1;x\ge\frac{5}{12}\\x< 1;x< \frac{5}{12}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ge1\\x< \frac{5}{12}\end{cases}}\)
Vậy \(x\ge1\)Hoặc \(x< \frac{5}{12}\)
Tìm điều kiện để căn thức sau có nghĩa: \(\sqrt{\frac{2x-4}{5-x}}\)
\(\sqrt{\frac{2x-4}{5-x}}\ge0\)
\(< =>\frac{2x-4}{5-x}\ge0;5-x\ne0\)
\(x\ne5\)
\(\frac{2x-4}{5-x}\ge0\)
\(TH1:2x-4\ge0;5-x\ge0\)
\(\hept{\begin{cases}x\ge2\\x\le5\end{cases}< =>2\le x\le}5\)
\(TH2:2x-4< 0;5-x< 0\)
\(\hept{\begin{cases}x< 2\\x>5\end{cases}}\)pt vô no
vậy ddeeer căn thức đc xác định thì\(2\le x\le5\)
ĐKXĐ : x \(\ne5\)
Để \(\sqrt{\frac{2x-4}{5-x}}\text{ có nghĩa }\Rightarrow\frac{2x-4}{5-x}\ge0\)
TH1 : \(\hept{\begin{cases}2x-4\ge0\\5-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x< 5\end{cases}}\Leftrightarrow2\le x< 5\)
TH2 : \(\hept{\begin{cases}2x-4\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x>5\end{cases}}\Leftrightarrow x\in\varnothing\)
Để căn thức \(\sqrt{\frac{2x-4}{5-x}}\)thì \(2\le x< 5\)
\(\frac{\sqrt{-3x}}{x^2-1}\) Tìm điều kiện để căn thức có nghĩa
\(\frac{\sqrt{-3x}}{x^2-1}\)
Điều kiện để căn thức có nghĩa là :
\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)
Tìm điều kiện để x của căn thức có nghĩa :
\(\sqrt{-x^2}\)
Căn thức cs nghĩa khi \(-x^2\ge0\Leftrightarrow x=0\)
để căn thức có nghĩa thì \(-x^2\ge0< =>x=0\)
Tìm điều kiện để căn thức sau có nghĩa
\(\sqrt{-x^2-1}\)
Tìm điều kiện để căn thức sau có nghĩa: \(\sqrt{x^2-8x-9}\)
Để căn thức \(\sqrt{x^2-8x-9}\) có nghĩa
<=> x2 - 8x - 9 \(\ge0\)
<=> (x - 4)2 \(\ge25\)
<=> |x - 4| \(\ge5\)
<=> \(\orbr{\begin{cases}x-4\ge5\\x-4\le-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)